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ABSTRACT OF DISSERTATION 

 

 
THE RELATIONSHIP OF SOMATOSENSORY PERCEPTION AND FINE-

FORCE CONTROL IN ADULT HUMAN OROFACIAL SYSTEM 
 
The orofacial area stands apart from other body systems in that it 

possesses a unique performance anatomy whereby oral musculature inserts 
directly into the underlying cutaneous skin, allowing for the generation of complex 
three-dimensional deformations of the orofacial system. This anatomical 
substrate provides for the tight temporal synchrony between self-generated 
cutaneous somatosensation and oromotor control during functional behaviors in 
this region and provides the necessary feedback needed to learn and maintain 
skilled orofacial behaviors. 

 
The Directions into Velocity of Articulators (DIVA) model highlights the 

importance of the bidirectional relationship between sensation and production in 
the orofacial region in children learning speech. This relationship has not been as 
well-established in the adult orofacial system. The purpose of this observational 
study was to begin assessing the perception-action relationship in healthy adults 
and to describe how this relationship may be altered as a function of healthy 
aging. This study was designed to determine the correspondence between 
orofacial cutaneous perception using vibrotactile detection thresholds (VDT) and 
low-level static and dynamic force control tasks in three representative age 
cohorts. Correlational relationships among measures of somatosensory capacity 
and low-level skilled orofacial force control were determined for 60 adults (19-84 
years).  

 
Significant correlational relationships were identified using non-parametric 

Spearman’s correlations with an alpha at 0.1 between the 5 Hz test probe and 
several 0.5 N low-level force control assessments in the static and slow ramp-
and-hold condition. These findings indicate that as vibrotactile detection 
thresholds increase (labial sensation decreases), ability to maintain a low-level 
force endpoint decreases. Group data was analyzed using non-parametric 
Kruskal-Wallis tests and identified significant differences between the 5 Hz test 
frequency probe and various 0.5 N skilled force assessments for group variables 
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such as age, pure tone hearing assessments, sex, speech usage and smoking 
history. Future studies will begin the processing of modeling this complex 
multivariate relationship in healthy individuals before moving to a disordered 
population. 
 

 

Key Words: Orofacial, Sensation, Force, Healthy Aging, Speech  
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Chapter One 
 

Introduction 
 

Every year 750,000 Americans are estimated to suffer a new or recurrent 

stroke1 joining the approximately 7 million individuals currently living with stroke.2 

Another 1.7 million Americans are estimated to sustain a traumatic brain injury 

annually.3 Medical costs for individuals surviving stroke (CVA) have been 

estimated to range from $28 billion1 up to $51 billion4 and approximately $60 

billion for those incurring a traumatic brain injury (TBI) in the year 2000.3 As 

people live longer and enjoy more active lifestyles, the risk of stroke and 

traumatic brain injury is estimated to continue increasing. In fact, projections for 

the year 2030 indicate an additional 4 million individuals will have a stroke, an 

increase of almost 25%.2 With decreased lengths of stay in acute rehabilitation 

and decreased approved outpatient services, a rising incidence rate, and medical 

costs estimated to grow each year, medical professionals are faced with the 

demanding challenge of identifying and treating the behavioral sequelae of 

neurologic injuries in an efficient, yet effective manner.2,5,6  

Dysarthria, a multidimensional disruption in speech production, is one 

possible sequelae occurring after neurologic injury. Speech dysarthria can be 

caused by either peripheral nervous system injuries or central lesions related to 

both pyramidal and extra-pyramidal damage.7 Dysarthria has been described as 

including weakness, paralysis, dyscoordination, primary and secondary sensory 

deprivation, and/or alteration in the tone of the speech musculature.8 Dysarthrias 

represent a collection of neurologically-based speech production disorders 
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resulting in both perceptually observable decreases in intelligibility and 

physiologic abnormalities in the strength, range, steadiness, and muscle tone or 

performance accuracy of speech movements.9-11 Speech dysarthrias have been 

shown to negatively effect quality of life by increasing feelings of social isolation 

due to decreased communicative abilities in social situations.12 Estimates for the 

incidence of speech dysarthria in the United States after non-progressive 

neurological injury, (such as CVA or TBI), are not clear given that most current 

literature on this topic is twenty plus years old at this time.13 Recent estimates for 

incidence hold that 42% of all individuals with a CVA14 and 33-50% of all 

individuals with traumatic brain injury15 have some degree of speech dysarthria.  

Much of the current research regarding assessment and treatment of 

speech dysarthria focuses on the motor movements and the clinician’s 

perception of speech intelligibility. In a review by Duffy,7 the motor aspects 

associated with disordered speech production are concretely defined; however, 

little quantitative research exists concerning the somatosensory aspects of the 

orofacial system and even fewer reports formally examine the relationship 

between somatosensation and speech production. Speech therapy is conducted 

by providing patients with acoustic, visual and tactile feedback. Thus, the role of 

the clinician is to modify and adapt the sensory experiences of clients to achieve 

a desired speech action. As such, treatment approaches designed to increase 

intelligibility in adults with non-progressive dysarthria secondary to neurologic 

injury would benefit from high quality research into not only the kinetics and 

kinematics of speech, but the somatosensory elements that underlie speech 
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production and the relationship between somatosensation and fine force control 

parameters.  

A central theoretical model that will be used in this dissertation to frame 

the relation between somatosensory and fine force control is known as the 

Directions into Velocity of Articulators (DIVA) model16-20 developed by Frank 

Guenther and colleagues. At its core, this model postulates that the way an 

individual produces speech will effect how he/she perceives speech, and vice 

versa. This idea is consistent with earlier and foundational theoretical positions 

such as the Motor Theory of Speech Perception21,22 developed by Alvin Liberman 

at Haskins Laboratories during the early 1960’s. The DIVA model, described in 

detail in the next chapter, is a computer network model describing the 

feedforward and auditory and somatosensory feedback systems involved in the 

learning and maintenance of skilled speech production in children. 

In the context of the DIVA model’s premise of bidirectional and reciprocal 

influences of perceptional-action during speech, deficits in auditory and/or 

somatosensory perceptual processing might negatively impact an older 

individuals’ ability to adapt to novel sensorimotor experiences and/or maintain 

learned skills. Application of this model with healthy adults using perturbation has 

shown that participants will use auditory and/or somatosensory feedback to 

adjust their speech strategies to achieve the desired speech goal. Therefore, the 

quality of incoming sensory feedback and an individual’s ability to process and 

use that information becomes paramount for correct speech production. If one 

couples the increase in prevalence of stroke and other neurologic events in aging 
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adults 2,23 with known age-related changes and declines in somatosensory 

processing, it is possible that the ability for aging patients to take full advantage 

of rehabilitative experiences crafted by the therapist may be compromised. 

Before better assessments and treatments can be designed for individuals with 

speech dysarthria, more research is thus required to characterize alterations in 

sensory and force capabilities in healthy young and older adults.  

The purpose of this dissertation work is to begin the process of describing 

the relationship between orofacial perception-action in healthy, English-speaking 

adults. This exploratory foundational research will identify the relationship 

between labial sensation and production using a vibrotactile threshold detection 

method and low-level force control assessments. Finally, a description of how 

aging influences the reciprocal relationship between sensation and force control 

will be provided.  

 In the following chapter I will provide: 1) an introduction into current 

theoretical models used to guide assessment and treatment approaches in 

speech dysarthria; 2) a review of sensorimotor literature in the orofacial region of 

healthy young, aging, and disordered populations; 3) a discussion of the content 

gaps in our current appreciation of sensorimotor integration in healthy and 

disordered populations, and finally, 4) hypotheses for future directions for the 

field of sensorimotor speech disorders.  

 

 

Copyright © Nicole M. Etter 2014
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Chapter Two 
 

Review of Literature 
 

This chapter will provide a critical review of the literature regarding the 

sensorimotor characteristics of healthy young, older, and disordered speakers. 

The purpose of this review is to critique the current literature on orofacial systems 

involved in speech perception and production. A selection of theories used to 

frame experimental studies and clinical assessment and treatment will be 

presented with a focus on how these theories provide a framework for future 

studies. Basic science literature regarding kinetic, kinematic, and somatosensory 

assessment with healthy and impaired participants will be provided to frame our 

current appreciation of orofacial sensorimotor elements with particular attention 

given to the lips. Finally, I will present selected empirical gaps in our fund of 

knowledge regarding how auditory and somatosensory feedback may apply to 

the assessment and treatment of speech deficits after neurologic injury. 

 

Current Theoretical Models for Speech Production and Perception 

The use of theoretical models can be beneficial to researchers and 

clinicians to understand complicated processes of speech perception and action. 

Generally, speech researchers use theoretical models to guide hypotheses and 

questions and/or place their findings in the context of the larger field of 

sensorimotor communication disorders. Clinicians may find it easier to treat 

patients when they are able to understand the complexity of speech production. 

Often though there can be a disconnect in communication between the 
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researcher (bench) and the clinician (bedside), and a good theoretical model may 

help to effectively bridge this gap. The field of motor speech disorders may 

benefit from the guiding principles of a theoretical model to help in the 

transitioning of bench research to clinical practice. 

Various theoretical models have been used to guide the assessment and 

treatment of speech dysarthria from the laboratory to the clinic setting. The most 

pervasive model is the Darley, Aronson and Brown (DAB) classification system, 

also referred to as the Mayo Clinic model.24,25 Work by DAB set the foundation 

for early definitions and classifications of speech dysarthria based on neurologic 

and perceptual assessment. Their classification system, and resulting model, has 

been used unfailingly in current laboratory research and clinical treatment 

settings. Other theoretical models are well known in research settings, but have 

yet to make their way into clinical practice. Theoretical positions like the Motor 

Theory (MT) of Speech Perception21,22 and Dynamic Systems Theory (DST)26,27 

and models such as DIVA19,28-31 have focused on the learning and maintenance 

of speech in healthy populations. In comparison to DAB, these selected theories 

of speech production place a high importance on the quality of auditory and 

somatosensory feedback for correct speech production. Through numerous 

studies the application of these theories in healthy individuals highlights how 

alterations in feedback or mechanical perturbation can disrupt speech production 

and its compensation. Application of these theories to an impaired population 

may provide critical insights into mechanisms related to the re-learning of speech 

after neurologic injury.  
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Darley, Aronson, and Brown (DAB)  

In the original work by Darley, Aronson, and Brown, speech dysarthrias 

were described as a “disturbance in muscular control” caused by a neurologic 

disorder or injury leading to “paralysis, weakness, or incoordination of the speech 

musculature.”24(p246) In fact DAB were some of the first researchers to recognize 

and stress that speech dysarthria was caused by neurologic injury or impairment, 

where as previous researchers thought of dysarthria as strictly a peripheral 

disorder.7 In their seminal work, DAB created a means of identifying speech 

disorders by categorizing numerous subjectively assessed features regarding the 

sound and creation of speech and correlating these factors to a given neurologic 

disorder. Their classification scheme was based upon perceptual features and 

subjective ratings of speech production variables including pitch, loudness, vocal 

quality, respiration, prosody, articulation and what they described as the overall 

intelligibility of the speech sample, including variables such as “bizarreness” of 

speech. DAB used perceptual consensus from three speech-language 

pathologists (SLPs) who listened to 30-second speech samples to establish the 

five original dysarthria categories: spastic, ataxic, hypokinetic, hyperkinetic, and 

flaccid dysarthria. DAB later added a sixth category of mixed dysarthria, which 

represented a combination of characteristics of flaccid and spastic dysarthria 

associated with amyotrophic lateral sclerosis (ALS). These six classifications, 

along with the addition of apraxia of speech (AOS), have been classically 

described in the speech pathology literature as motor speech disorders.9,24  
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 Although DAB did not specifically intend to create a model for 

understanding dysarthria, their work continues to be used in clinical and research 

settings to diagnose, label, and provide a gross description of a patient’s 

dysarthria for behavioral interventions. In an edited work by Weismer,32 Duffy 

writes that the Mayo approach “continues its dominance in research and clinical 

practice today.”(p.17) The persistent use of this classification system as a guiding 

model to the exclusion of others may not be optimally beneficial for moving the 

study of assessment and treatment of speech disorders forward, as the DAB 

approach is not without numerous flaws. First, their original report on the 

behavioral and assumed physiological features of speech disorders relied 

extensively on the perceptual judgment of a handful of SLPs listening to short 

speech samples without the benefit of conversational context. They did neither 

physical nor objective examinations of speech kinematics, kinetics, or sensation. 

Secondly, the classification categories developed by DAB were not well defined 

or lacked enough specificity and distinctiveness to be of real diagnostic value. 

For example, motor features ranging from flaccid to spastic defined the category 

of “mixed dysarthria”. (Not surprisingly the most common diagnosis of dysarthria 

clinically is mixed,7 with the next most common being flaccid dysarthria at only 

9%.) The heavy use of a non-specific, catchall category such as mixed dysarthria 

suggests that these classifications are not an effective means for clearly 

differentiating subclasses of dysarthria because of the wide range of muscle 

characteristics that can fit into this broad category. Lastly, the DAB classification 

system is dogmatically utilized in research as well as in the assessment and 
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treatment of individuals with stroke and traumatic brain injury. While the original 

work by DAB did include individuals with upper motor neuron disorders, it was 

not specified if any of their subjects had had a stroke or brain injury. Attempts to 

use this classification system with individuals with stroke have shown a lack of 

homogeneity in diagnosing speech dysarthria. In fact, Weismer notes that 

individuals with stroke or traumatic brain injury have been labeled under each of 

the seven classifications.32 Therefore, if the intended purpose of DAB was to 

connect neurogenic disorders or lesion sites with a specific motor speech 

diagnosis, it is likely not ideal to use this scheme for individuals with strokes or 

TBI. Individuals with stroke and TBI were not part of the original study and don’t 

appear to follow the classifications devised due to the high degree of variability of 

dysarthria in these populations.32,33 The fact that numerous treatment 

approaches for dysarthria for individuals with stroke or traumatic brain injury have 

been directly informed by the DAB classification is thus problematic at best. 

In reference to the DAB classification, Netsell has stated that studies in 

speech disorders have highlighted that the perceptual-physiologic relationship for 

skilled speech movements are much more complex than to those alluded to by 

the original DAB hypothesis.34 For example, in the DAB classification scheme, 

rate was a key variable assessed by the researchers in their speech samples. In 

fact, rate is viewed as a distinguishing characteristic between certain dysarthrias, 

and as such has become a primary treatment manipulative. However, as noted 

by Kent and Rosen, the causes for decreases in rate could stem from any of a 

number of factors, including weakness, fatigue or inefficient temporal processing. 
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In some cases, using a slower rate may actually be a compensation strategy 

employed by the individual with dysarthria in an attempt to achieve the tactile and 

proprioceptive feedback needed to inform evolving skilled speech output.26 

 Weakness is another term often used to describe numerous dysarthrias 

simply based on the acoustical perception of “imprecise consonants” or other 

qualitative descriptors of speech (eg. slurred or mushy). In treatment, weakness 

has been used as the principle rationale behind non-speech oral motor exercises 

(NSOMEs). Given the ubiquitous use of the term “weakness” it is interesting to 

note that when using objective instrumental kinetic and kinematic assessments, 

little progress has been made to confirm the assumption of weakness or explain 

the role of “strength” and “force” changes in skilled speech production.26 In fact, it 

has been found that under normal conditions, lip forces during skilled speech 

require approximately 2 Newtons or less, an estimate of 10-20% of the maximum 

force the musculature of the lips are capable of achieving.35-37 Therefore, muscle 

weakness cannot be the sole agent responsible for explaining decreased speech 

accuracy in consonant production. 

 Given this brief overview of the DAB model, it is suggested that the use of 

this model may be less than adequate to act as the central guidepost for the field 

of sensorimotor speech disorders, particularly when applied to individuals with 

non-progressive speech dysarthria following neurologic impairment, such as 

stroke or TBI. While DAB’s work did help to establish the importance of 

recognizing the neurologic basis of acquired speech disorders, the continued and 

dogmatic use of this classification system for all neurologic populations is 
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unfounded. What is needed instead is a theoretical model that can take into 

account factors such as the precise location and severity of injury, pre-morbid 

speech abilities, somatosensory and auditory feedback mechanisms and other 

neuroanatomical features to characterize a patient’s speech deficit. In the 

following section, a selection of theoretical constructs and a possible candidate 

model for speech perception-action will be presented.  

Theories of Perception-Action in Speech 

The Motor Theory (MT) of Speech Perception20,21,36 postulates three main 

principles: 1) that speech processing is a special event; 2) there are invariant 

motor commands for the articulators to produce a specific configuration that is 

then perceived by a listener; and 3) there is a direct linkage between speech 

production and speech perception.21,38 Although the Motor Theory of Speech 

Perception has received criticism within the field of speech perception, it is 

nonetheless a useful tool for providing insight into how a listener may perceive an 

intended phonetic gesture of a speaker. While speech is complex, the idea that 

speech is special and requires separate and unique biological underpinnings 

appears to be unfounded.22 The remaining two principles though have more 

evidence to support their claims.22,39 There are numerous studies in speech 

science literature to demonstrate the importance of incoming sensory afference, 

both auditory and somatosensory, to inform speech perception and motor 

output.39-43 Imaging studies using functional MRI44 and transcranial magnet 

stimulation (TMS)45 have demonstrated that cortical excitation occurs in motor 

areas when speech is auditorily perceived. During speech development and 
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throughout speech use, the auditory signal is typically assigned primacy to 

identify accuracy and provide feedback to correct production errors.39,46 It is 

specifically this tenant of MT, the reciprocal relationship of sensation and 

production, that may be useful to expand upon. 

Dynamic Systems Theory (DST) is another motor control theory that has 

possible applications to speech motor control.26 This research will use a 

Bernstein view of DST,47,48 and its close theoretical cousin sensorimotor neural 

selectionism,49-51 to illustrate how neurobehavioral networks form 

developmentally and how complex dynamic performance emerges from the 

interaction of neurobiological networks and environmental affordances.27,52-54 In 

DST, researchers use conceptual heuristics such as attractor states or attractor 

“wells” to characterize stable behaviors, while in selectionist network theories, 

these similar states would be referred to as prototype exemplars of a perceptual 

category.49,51 Speech remains flexible in achieving spatiotemporal targets within 

the context of a stable attractor state because performance features of speech 

are continuously updated through real world sensory feedback.27 When 

individuals perform an action they are not accessing a stored motor plan in a 

‘homunculus’ that has previously been learned and then saved in the brain. 

Humans (and other organisms) are capable of numerous behavioral variations to 

accomplish a functional goal based in part on the defined structures of the body 

and how the body interacts with environmental constraints. In fact, these models 

can be used to understand how our nervous system acts to calculate and specify 

the necessary sensorimotor transforms to achieve a desired outcome/movement 
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goal.27 The famed Russian-born motor control theorist Nikolai Bernstein has 

contributed greatly to our understanding of movement and motor control by 

hypothesizing that movement is the result of interactions of the central nervous 

system (CNS), the physical properties of the musculoskeletal system, and 

environmental forces.47 Bernstein was one of the first researchers to explicitly 

define movement in terms of cooperative and multifaceted synergistic 

interactions among the body, environment and intent.48 

Bernstein’s notions of synergies in movement are generally applicable to 

the orofacial and vocal tract systems. For example, in the context of the sound 

source and filtering systems of the human vocal tract, we know that there are 

near limitless 3D geometric deformations of vocal tract space that can result in 

the sounds of a language. As individuals learn a new language, there may be 

increased perceived effort to coordinate the tongue, teeth, and lips to form the 

correct sounds at the individual level. At this stage, speakers are most rigid in 

their production of sounds to ensure correct speech execution. As skill develops, 

speakers become more flexible in their means of accomplishing the production 

goal; they have more freedom in not only how the lips, jaw, and tongue can move 

and interact, but they are also less affected by changes in task demands and 

environmental perturbations. For example, tongue placement may not have to be 

as exact to still produce sounds within an envelope of perceived correctness. 

Therefore, using a concept adapted from Bernstein (1967), healthy, skilled 

speakers have more invariant results even when using variant means of 

production. As skilled speakers, individuals can use several degrees of freedom 
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in varying means and degrees to produce a common and functionally appropriate 

acoustic goal.  

According to Bernstein the fundamental problem for understanding 

movement systems is “the process of mastering the redundant degrees of 

freedom” or more succinctly, how the motor control apparatus is organized to use 

its inherent adaptive capacity to achieve a function goal.47 Research has shown 

that individuals will attempt to use the most efficient motor plan that stays within 

the acceptable envelope of completing the task or goal. Davids et al. write, “This 

task-specific view may provide a better framework for understanding the role of 

inter- and intra-individual variability in the provision of diagnoses and treatment 

interventions in human movement by sports medicine.”55 The variety in body 

parts and processes to choose from when executing a motor goal has been 

termed as “degrees of freedom.” Degrees of freedom are the individual variables 

that we are capable of manipulating by either freezing them (holding them 

constant) or freeing (allowing flexibility) to accomplish a goal.27,56 This concept 

provides a framework for understanding features of coarticulation, a necessary 

skill for running speech that comes from the complex interplay of the anatomy 

arranged in such a way as to allow for a range of acceptable articulatory gestures 

to produce the given acoustic signal.26 In this case, variation is not just “noise” 

but a hallmark of a skilled speaker. In fact, it is possible that in disorders of 

speech, patients no longer have the flexibility of the production system to achieve 

the desired speech goal. It is often implied that individuals with dysarthria have a 

problem with coordination of their movements. Coordination can be defined as a 
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pattern in spatiotemporal movements to reach a target goal that is 

repeatable.26,57 This definition emphasizes that speech is a goal-directed 

behavior or action; however it also implies that reaching the intended movements 

relies on being able to successfully repeat a pattern.  

Continuing this line of thinking, it is reasonable to hypothesize that 

individuals with dysarthria may exist within a state defined by excessive degrees 

of performance variation. As such, more clarity is needed to define what precisely 

constitutes performance “variation”. For example, at some time points, variation 

is a positive attribute of a highly skilled speaker, providing the person with the 

ability to achieve a speech goal from a large array of combinatorial solutions. At 

other times though, variation becomes a drawback to the system, resulting in an 

inability to achieve the intended movement goal. Based on data from perturbation 

studies, skilled speakers when faced with mechanical,58,59 displacement,53,54 and 

auditory60,61 perturbations, will compensate for unintended target errors by rapidly 

reorganizing their production system. Therefore, it is possible that individuals with 

dysarthria are constrained in their ability to make specific target sounds, with 

changes in neuromuscular control and sensory feedback post-neurologic injury 

functioning as a perturbation in and of itself. Therefore, retraining and a 

recalibration of acceptable speech output must be of sufficient intensity to alter 

the behavioral stability of disordered speech and return the patient to more 

functional and adaptive speech production. A model that may describe how 

recalibration of a dysarthric speaker’s perception-action loop may occur is the 

DIVA model. 
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Directions into Velocities of Articulators (DIVA) Model 

 The Directions into Velocities of Articulators (DIVA) model can be used to 

provide insights into speech dysarthria. The DIVA model of speech perception is 

a recent theoretical model that attempts to relate the neuromotor and 

biomechanical properties of the speech system to the sensory processes 

deemed necessary for speech production (See Figure 1).19,26,28,29,62,63  

 
Figure 1: DIVA Model Schematic18 
Schematic of DIVA model from Tourville and Guenther, 2009. See text for details. 
 

This innovative computer model was created to highlight the importance of 

perception in the production of speech while tying speech production to 

biologically known anatomical substrates and functions from the growing 

literature in the area of functional brain imaging.18,64 The Directions into Velocities 

of Articulators model, DIVA, was primarily intended as a computer simulation-
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based neural network for understanding speech development in healthy 

children.19 One critical feature of DIVA is that it formally highlights known brain 

regions involved in speech production, including bilateral medial and lateral 

frontal cortex, parietal cortex, superior temporal cortex, the thalamus, basal 

ganglia and cerebellum and how these structures communicate for learning a 

skilled behavior.18,64 These areas of the brain are used for the planning, 

execution, and if necessary, the correction and adaptation of skilled speech 

activities.  

Over the past decade and a half since its conception, the DIVA model has 

been repeatedly tested and continually refined. The current instantiation of the 

model seeks to provide a coherent framework for explaining speech perception-

action phenomena including: the use of motor equivalence, feedback and 

feedforward processes, the effect of speaking rate and, how speech skill is 

developed and refined throughout developmental learning.18 In the schematic of 

the model above in Figure 1, each box represents a specific set of neurons with 

arrows corresponding to axonal projections thus depicting information transforms 

through a series of synapses with another area of the neural mapping. Starting in 

the upper left hand corner of the model, the speech sound map corresponds with 

neural networks that maintain the learned syllabary for the speech sound 

production; this area correlates to Broca’s area in the inferior frontal gyrus. By 

activating the speech sound map, the subsequent motor command enters the 

motor cortex via feedback and feedforward control subsystems interspersed 

within the perisylvian language zone along the lateral convexity of the cortical 
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mantle.65 Feedback control subsystems pertains to both audition and 

somatosensation.  

In a mature speaker, the system has completed a lengthy training process 

that matches the intended speech goal to an acoustic and tactile/proprioception 

target. This training process simulates the developmental time course and 

neurobehavioral events in the acquisition of human speech by a child. In healthy, 

typically developing children, this process occurs during babbling and early 

speech behavior to tune and organize feedback error maps with the motor 

commands and to develop sensory maps via tactile, proprioceptive and auditory 

feedback signals. One key element of this model is that the training of phonemes 

creates target regions and not tightly bound endpoints. This structure presumably 

allows for a wide variety of allowance for speech sound production and 

perception, an important factor for coarticulation in running speech, contextual 

variations, and rate effects.62,65 In work with children, Kuhl and colleagues have 

found that during speech development, children cultivate an inhibitory response 

to ignore variations in speech that are irrelevant to deciphering their native 

language.66 The process of training the error maps and sensorimotor transforms 

ensures that the speech sound map cells are activated both when producing and 

perceiving sounds, a phenomenon that is hypothesized to involve mirror neuron 

system. Briefly, mirror neurons are a class of cells discovered by Rizzolatti and 

colleagues in the mid- 1990’s that are activated when a primate performs a 

specific action and when it observes that specific action being performed by a 

conspecific. This neurophysiological mechanism may play a fundamental role in 
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imitative motor learning, including speech.45,67,68 However Lotto, Hickok, and Holt 

have argued that due to the linguistic complexity of speech perception and 

production of coarticulation, mirror neurons should not be viewed as the primary 

solution of speech perception.69 Their application to the emergence of human 

behavior remains a hotly contested area of research. 

 Although the DIVA model posits an explanation for how speech is learned 

by the developing infant and child, it may also offer critical insights into how the 

speech system can generally be re-trained after neurologic injury. For example, 

one of the basic mechanisms of the model is a continuous updating of auditory 

and somatosensory error maps based upon real-time performance-related 

afference. This feature clearly highlights the importance of auditory and 

somatosensory feedback and feedforward control systems.65 Recent work by 

Ostry and colleagues70 supports this contention by demonstrating that the 

sensorimotor system can adapt and alter target endpoints following a period of 

speech motor learning, thus demonstrating that adaptations not only happen in 

speech motor systems, but in the auditory representation of the phonemic goals 

as well. Further research by Ostry and colleagues,40-43,71-74 highlights the 

adaptability of the speech system to performance perturbations, highlighting the 

flexibility of the system in spite of imposed mechanical, auditory, or 

somatosensory interference. Future therapies for speech dysarthria may benefit 

from specifically exploiting mechanistic features of feedback and feedforward 

control systems to target speech goals. For example, by providing specific 

alterations in somatosensory or auditory feedback, patients may attempt to 
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compensate for performance discrepancies in a manner that increases speech 

intelligibility. For individuals with dysarthria, it may be important for the therapist 

to provide adequate feedback in the accuracy of the target, and an ongoing 

readout of performance accuracy to help the client maintain effective learning of 

necessary sensorimotor transformations.26  

Although DIVA began as a model of speech acquisition and phoneme 

refinement during development, it may provide insights to the relearning and 

refinement of speech production/perception post-injury. In fact, there is already 

precedent for using DIVA to model phonological disorders in children,20 adult 

stuttering,75 and apraxia of speech.18 In light of this brief discussion, it is 

reasonable to conclude that the DIVA model may offer clinicians and researchers 

alike a framework for guiding the design of assessments and treatments for 

individuals with dysarthria. This model combines not only the auditory perceptual 

measures of the listener, but also the auditory and somatosensory characteristics 

of the speaker while grounding all of this in a neurobiological substrate. In short, 

DIVA could be the key model needed to move the field of speech motor disorders 

forward.  

 

Anatomy and Physiology for Speech Production and Perception 

The orofacial system is responsible for producing numerous functional 

behaviors including feeding, facial gestures of expression, and speech.76-79 

Speech is a highly-skilled fine motor task produced rapidly with great accuracy 

while maintaining flexibility in achieving articulatory targets and can be improved 
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with practice.76,80 Speech movements require the rapid and highly coordinated 

interplay of numerous orofacial area muscle groups working synergistically 

towards an intended action.  

Labial Muscles 

The muscles of the lower face responsible for speech production possess 

unique anatomical characteristics that are morphologically different from skeletal 

muscles. The muscles of the lower face do not posses fascia, have no well-

defined insertion loci, lack tendonous attachments to the skull, have variant fiber 

orientations, interdigitate with other surrounding muscle groups and embed 

themselves directly into the overlying skin.35,81,82 Externally, the muscles of the 

lips are covered with skin and are internally covered by mucous membrane.83 

The lip musculature is comprised of no fewer than ten intrinsic and extrinsic 

muscle groups that extend from the maxilla and mandible and insert directly into 

the labial skin.35,83-85 The major mass of the upper and lower lips are made up of 

the orbicularis oris (OO) muscle with fibers that originate from one corner of the 

mouth and travel to the other corner in an imbricated pattern. The OO muscle 

functions to close and round the anterior oral region83 in a sphincter-like and 

compressing manner.86 See Figure 2 for an image of the complex interdigitation 

and potential movement angles for the muscles of the lips.85  
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Figure 2: Interdigitation of Labial Muscles85 
Image of various muscles that make up the lips to illustrate the high level of 
interdigitation and the complex movement patterns that are achieved through different 
muscle groups working together, unlike isometric movement of the limbs. 
 

Interdigitation of labial muscles and the fact that these muscles insert 

directly into the overlying skin allows for complex co-contraction of these muscles 

to create innumerable labial positions for gestures and speech production 

purposes.35 In fact, the labial system shares characteristics with the 

biomechanical properties of a muscular hydrostat, a muscular organ that 

maintains its own supportive shape and is able to generate three-dimensional 

conformational tissue changes.86  

Mechanoreceptors in Lower Face  

Muscles. Because vision is limited as a feedback mechanism for speech 

motor control, humans rely heavily on auditory, proprioceptive and 

mechanoreceptive information.35 The vocal tract possesses unique combinations 
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of somatosensory receptors including pseudo-muscle spindles, select joint 

receptors, chemo- and baroreceptors and various cutaneous mechanoreceptor 

classes that are able to detect low-threshold sensory events such as stretch, 

strain, air pressure/flow and vibration.35,79 The labial system possess a unique 

array of sensory endings compared to other vocal tract structures. For example, 

the morphological equivalent of joint capsules or intrafusal fibers have not been 

identified in the lips, suggesting an alternative strategy for obtained 

proprioception information through cutaneous channels.84,87,88 

Cutaneous. Glabrous, or non-hairy, skin contains four mechanoreceptors: 

Merkel cells, Meissner, Ruffini, and Pacinian corpuscles (PC).89 The skin 

overlying the lips only contain three of these receptors; Pacinian corpuscles have 

not been identified in the lips.90,91 All mechanoreceptors in the lips are innervated 

by large diameter type II Aβ fibers that originate from the second (V2) and third 

(V3) divisions of the trigeminal nerve.92 These receptors can be differentiated 

from each other by their physiologic response to ramp and hold activity and 

vibration. Similar to other cutaneous mechanoreceptive classes, these endings 

possess both slow (SA type I or II) or rapid (RA I) adaptation properties.  

Numerous studies have been completed characterizing somatosensory 

processing in the perioral skin to various low-level mechanical inputs.35,76,93-100 

Classically, a four channel theory of sensitivity to vibration has been suggested to 

code vibrotactile responses in glabrous skin within an operating range of 0.4 to 

over 500 Hz.101 Researchers have confirmed the presence and distribution of 

various mechanoreceptors in the glabrous skin of the lips and palm versus non-
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glabrous or hairy skin. Using the classification of Bolanowski and colleagues,101 

the P channel is associated with Pacinian corpuscles and responds well to 

vibratory inputs from 250-300 Hz, however has an operating range up to 800 Hz. 

The lack of PCs in the face has been confirmed by psychophysical studies 

demonstrating a drop off in perceptual response at 250 Hz.76 Three non-Pacinian 

channels have been identified in the lower face. The non-Pacinian I (NP-I) 

channel is associated with the rapidly adapting type I receptor or Meissner 

corpuscle. The Meissner corpuscle is sensitive to vibratory inputs between 3 and 

100Hz.101 The Meissner corpuscles respond to lower frequency vibration often 

characterized as flutter. Generally, rapidly adapting endings encode stimulus 

information at the onset and offset and are better for encoding dynamic content 

of a stimulus.89  

The non-Pacinian II (NP-II) channel is associated with the slowly adapting 

type II receptor, or Ruffini end organ. The involvement of Ruffini endings for 

mechanoreception is somewhat controversial. It is hypothesized they Ruffini’s 

may be involved in detecting stretch or used for proprioception directly. Ruffini’s 

respond to a frequency range from at 15-400 Hz.101 The last channel is 

characterized as a third form of non-Pacinian (NP-III) channel and is associated 

with the slowly adapting type I ending or Merkel disc. Merkel discs contribute to 

the detection of pressure and form and respond to vibratory inputs from 0.4 Hz to 

just over 100 Hz.101 Finally, free nerve endings are also present in the facial skin, 

but their role in orofacial proprioception is currently unknown. The lips have a 

higher number of slowly adapting endings that respond throughout the duration 
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of stimulation in the receptive field.89 These receptors are also responsive to 

contraction, stretch, deformation of the labial muscles, and direct contact 

providing important and necessary feedback underlying skilled orofacial gestures 

and behaviors.35,88  

The various types of mechanoreceptors available in the lower face, both 

glabrous and non-glabrous skin, contribute to the overall ability of the face to 

detect small variations in stretch.35 In fact, the lower face is highly sensitive to 

small levels of contraction, stretch, velocity adjustments and load 

dynamics,76,77,84,102-104 all of which correlate well with inputs necessary for 

maintaining the skills needed for complex orofacial behaviors, like speech.101 

This high sensitivity likely plays an important role in maintaining performance skill 

through the feedback from self-generated orofacial behaviors.105 Cutaneous and 

proprioceptive information gathered from mechanoreceptors in the lips reach the 

cerebrum for perceptual processing via select cranial nerves and the thalamus. 

Afferent Information and Perception 

All mechanoreceptive, nocioceptive, and thermoreceptive sensory 

information from the skin of the face is transmitted centrally via the trigeminal 

nerve (CN V).89 The trigeminal nerve is made up of three branches serving 

distinct anatomical areas of the face: ophthalmic, maxillary and mandibular. The 

ophthalmic branch innervates the anatomical area from the nose tip superiorly to 

the scalp, including the eyelid, cornea, and mucous membrane of the nasal 

cavity. The maxillary branch supplies the areas of the lower eyelid, mucous 

membrane of the upper mouth and nose, as well as the upper part of the pharynx 
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and sinuses. Finally, the mandibular branch supplies the lower teeth and gingiva, 

lower face, and the skin of the ear.83 Peripheral branches of the trigeminal 

ganglion enter the trigeminal nerve at the mid-pons level. Large diameter 

afferents, responsive to vibration and indentation and serving the ipsilateral side 

of the face, innervate second-order neurons centrally.89 The principal sensory 

nucleus (Vp) of the Trigeminal in the pons is mapped somatotopically and is the 

primary target for all sensory inputs from low threshold cutaneous 

mechanoreceptors. Afferent neurons from Vp project axons across midline at the 

level of the pons to join the fibers of the medial lemniscus. The trigeminal fibers 

continue rostrally via the trigemino-thalamic tract and terminate upon third-order 

neurons in the ventral posteromedial (VPM) nucleus of the thalamus.106 The VPM 

is the primary thalamic nucleus for all facial cutaneous inputs in humans and 

primates.106  

Cortical Maps and Representations 

Axons from the thalamus project to the primary sensory cortex (S1). S1, 

located anatomically on the postcentral gyrus, contains functionally and 

architecturally distinct areas and is organized to form a complete somatotopic 

map of the body. The primary sensory cortex can be divided into four subareas 

based on the form of somatosensory information it receives from subcortical 

regions: Areas 3a, 3b, 1, and 2 (from rostral to caudal).35,89 Information from 

rapidly adapting endings, such as Meissner cells, synapse on to Area 1. Area 2 is 

primarily activated by joint information. Muscle spindle afferents that encode 

position and velocity synapse on to Area 3a. The slowly adapting 
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mechanoreceptors of the skin, including the Merkel and Ruffini endings, synapse 

on to Area 3b.35,89,92  

Adult speakers have fully developed central sensory (tactile, 

proprioception and auditory) maps that are heavily integrated with surrounding 

cortical areas. The distribution of receptors is not even throughout the body and 

thus the corresponding mappings on S1 reflect this state with a larger 

representations for the orofacial region comparatively. For example, there is a 

disproportionately large representation of the skin of the lower face, lips, and 

tongue on the lateral postcentral gyrus highlighting the increased sensory acuity 

of the lips due to experience, and use.35 These mappings are not fixed; instead 

the varying sizes of cortical maps reflect life-long use, behavioral experience, and 

skill competency.89,107-110 

Motor System 

The primary motor cortex (M1), anatomically located on the precentral 

gyrus, receives somatosensory inputs directly from the thalamus and S1 via Area 

5 and 7 of the parietal lobe.89,92 At a gross level, M1 appears to have distinct 

areas for major body regions organized in an inverted somatotopy similar to S1. 

However, intra-areal organization does not appear to possess the 

somatotopically organizational layout found in S1. Supramaximal electrical 

stimulation of a circumscribed area of M1 can activate numerous related muscle 

groups. As such, it has been suggested that M1 is organized to promote 

coordination among functionally related muscle groups (synergies) rather than 

organized at the level of single muscles.111 Overlapping efferent representations 
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for jaw, lips, and tongue musculature have been noted in lateral regions of M1.112 

This fractionated and overlapping organization suggests that M1 is not a direct 

map of the body’s musculature (a homunculus), but rather a map of behavioral 

function (movements, actions, and behaviors) and muscular synergies. Such a 

mapping suggests a complex interplay among multiple performance-related 

areas through reciprocal connections with premotor cortex, the supplemental 

motor area, somatosensory cortices (SI and SII), and the thalamus.113  

A disproportionately large area of the neocortex is dedicated to executing 

the functional orofacial gestures needed for speech production. Prior to an 

action, activity patterns in M1 are highly correlated with the production of 

precision force generation necessary for preparation of speech production.114-116 

During the preparatory phase, corticomotoneuronal firing patterns change in 

relation to the early phases of fine force control and rate of force change.114,117,118 

In fact, M1 appears to contain populations of neurons that are tuned to 

differentially respond to static or dynamic activities,114 a feature that may be 

beneficial during the production of complex force dynamics needed for speech.  

Projections from M1 descend to the brainstem where motor inputs via 

high-density monosynaptic projections are made directly to the facial motor 

nucleus in the pons.119 The facial nerve’s motor fibers supply innervation for 

facial movements for gestures and behaviors.88 The facial nerve travels through 

the internal auditory canal and mastoid bone to the stylomastoid foramen and 

separates into five peripheral branches (temporal, zygomatic, buccal, mandibular 

and cervical) innervating all facial muscles.120  
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Muscles of the lower face are characterized as having smaller motor units 

allowing for finely graded and highly fractionated movements.35,121 The high 

density of monosynaptic projections and the low innervation ratio of motor units 

of the lower face allows for a highly coordinated system capable of making the 

finely graded adjustments in force and position necessary for skilled speech 

production.122,123  

 

Assessment of Speech Production and Perception in Healthy Populations 

Assessment of lip function 

Increased knowledge regarding the performance anatomy of the lower 

face will be beneficial toward understanding speech sensorimotor control in 

healthy, aging, and disorder populations.35,124 Physiologic assessments of 

orofacial function have been completed in passive, static, and dynamic states. 

This section will provide a brief overview of our current appreciation of 

physiological assessments in the lips of healthy adults. 

Healthy Young Adults  

The perioral region is one of the most sensitive areas on the human 

body.76,125-129 As described above, the perioral region does not contain muscle 

spindles, golgi tendon organs, nor joint receptors;76,130 therefore, work in 

proprioception is often studied using mechanical stretch, strain and vibration 

applied to the skin. Using cutaneous mechanical and vibrotactile detection 

methods on glabrous and non-glabrous skin has been a popular model for 

sensory assessment in the lower face.76,93-95,98-100 Work by Barlow76 confirmed 
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that the face has different types and distributions of mechanoreceptors compared 

to other body areas, such as the hand. He also found that of the orofacial skin 

sites assessed, glabrous skin had significantly lower vibrotactile detection 

thresholds than non-glabrous (hairy) skin, indicating better tactile sensitivity in 

glabrous skin. There is some evidence to indicate sex differences in perioral 

sensation,125 although more research is needed to confirm these results.  

Because of the complex interdigitation of the labial muscles, mechanical 

stimulation to the skin of either the upper or lower lip will evoke a reflex response 

in inferior and superior divisions of the orbicularis oris (OOm).131 However, similar 

mechanical stimulation to more remote musculature like the chin will not evoke 

the same specified response.123 There is partitioning within the orbicularis oris as 

well. In a study using electromyography (EMG),132 researchers found a functional 

compartmentalization of the OOm suggesting that the lip is not activated as a 

single muscle entity during varying speech sounds. This finding is consistent with 

early kinematic data demonstrating variations in upper and lower lip movements 

for speech sounds.133,134 For example, the lips demonstrate velocities of 5 up to 

25 cm per second during speech.35 The upper and lower lips are not equal in 

their contribution to speech sounds with the lower lip moving up to twice the 

distance of the upper lip for certain sounds135 as well as being the faster of the 

two structures.83 Interestingly, most of the lower facial muscles insert into the lips 

giving the lips a large potential repertoire of fractionated movements for speech 

sounds.35  
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  Perturbation studies have been used to assess the responsiveness of the 

orofacial system to external loads.58,59,136-139 These studies have demonstrated 

that the lower face is able to functionally adapt to unexpected changes in 

movement trajectories in a predictive and rapid manner.35 In a study by Folkins 

and Abbs,140 force perturbations were applied to the jaw to prevent closing 

movements necessary for bilabial stops. The researchers found that despite the 

mechanical load, participants were able to make rapid compensatory 

adjustments to achieve the target sound, demonstrating an online reorganization 

of jaw and lip movements during speech tasks. In further work, Gracco and 

Abbs59 applied smaller, unanticipated loads to the lower lip during bilabial 

productions of the phoneme /b/ and found again that subjects were able to 

compensate to complete the target phoneme. Continuing their collaboration, 

Gracco and Abbs59 hypothesized that speech movements are organized at the 

goal or action level. This work relates well to the motor control theories discussed 

previously as it demonstrates that labial actions may be planned at a higher 

cortical level and that the overall movement plan is more important than 

individual articulator control.27,141 In a recent perturbation study using fMRI to 

determine central cortical effects, researchers found that mature speakers were 

able to compensate for perturbations by adjusting other functionally-related 

articulators (e.g. lips, tongue, jaw).142 Additionally, while not the focus of this 

review, numerous studies utilizing perturbations to the jaw have also confirmed 

online compensatory responses of articulators to maintain speech output in the 

face of altered production.41-43,72 
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 Various studies have been completed to distinguish the maximum level of 

force the tongue and lips can attain and what amount of force is necessary for 

speech production.37,86,143 Kent and colleagues143 reviewed results from various 

studies indicating maximum reported lip144 forces during bilabial lip closures of up 

to 4 Newtons, upper lip forces around 4 Newtons and lower lip (in males) forces 

up to approximately 15 Newtons.144 Work by Muller and colleagues calculated 

forces necessary for speech production to be less than 2 Newtons.86 Differences 

in force control for the upper and lower lips have been confirmed by Barlow and 

Netsell123 through the demonstration that lower lip force control is less variable 

during static lip control tasks. While males and females demonstrated differences 

in maximum force compression in these studies, they compare similarly in skilled 

ramp and hold force assessments using end-point targets similar to those found 

during speech (0.25 to 2 Newtons).36 Labial studies of healthy, young individuals 

reveal a complex and highly sensitive system capable of rapid movements and 

finely skilled adjustments needed for speech production.  

In a healthy adult, speech has reached such a high level of mastery that it 

continues to be produced with high rates of speed and accuracy with little to no 

cognitive thought as to how it is produced.26 Minimal errors are made and 

corrections are completed in a predictive and rapid manner. Speech is so over 

learned and highly skilled that adult speakers are able to produce speech in the 

face of numerous perturbation states. It is not until after injury, whether central or 

peripheral, that individuals must concentrate on how speech is produced and 

consciously attend to speech movements, work to identify errors, and plan 
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corrections. As stated by Netsell, it should be noted that speech patterns are not 

fixed motor movement routines; “the speaker’s internal referent is what it ‘feels’ 

and sounds like to produce certain speech movements and acoustics.” 80(pg.10) 

Because correct production of a target phoneme is heavily based upon 

acoustical feedback, there is an acceptable level of variance in the system. Motor 

equivalence allows for motor system elements (in this case the various positions 

of the vocal tract) to have considerable variation and yet maintain successful 

speech end-products.77,145 However, behavioral and physiological changes 

associated with healthy aging may impact the ability of older adults to correctly 

perceive and produce speech. 

Healthy Aging  

Alterations in tactile detection capacities are known to occur throughout 

the skin as a function of healthy aging. These aging-related somatosensory 

perceptual changes are characterized in part by increases in tactile detection 

thresholds, independent of the form of the stimulus, suggesting a progressive 

diminution of cutaneous somatosensory sensitivity. Several studies 

demonstrating alterations in tactile sensation with aging have been completed 

using different body locations such as the hand and fingertips,146-153 foot sole,154 

or a combination of locations including hand, foot, shoulder and cheek.155-157 In 

spite of what is known about structural changes in skin with aging and sun 

exposure,158,159 as well as the diminution of aging-related perceptual sensitivity to 

tactile stimuli in the fingers, hands and feet, relatively little is known pertaining to 
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vibrotactile perceptual changes in the lips of the aging, regardless of health 

status.  

Our current appreciation of aging-related orofacial and perioral tactile 

sensitivities is based upon limited and low-resolution assessment methods of 

tactile perceptual skills.160-162 For example, in a study by Stuart and 

colleagues,157 a group of healthy older adults had increased vibrotactile detection 

thresholds (decreased sensation) on the non-glabrous skin, or hairy skin, of the 

face (cheek). Applications of this study to labial sensation may be restricted due 

to the testing location (non-glabrous skin of the cheek versus the glabrous skin of 

the lips), and the small set of test frequencies (30 and 200 Hz) used to assess 

mechanoreceptor responsivity. In fact, these vibrotactile test stimuli were not 

optimally suited to probe the orofacial sensorium with any great resolution given 

that although the known range of sensitivities of orofacial cutaneous 

mechanoreceptors is from DC to 300 Hz,76,77 the bandwidth of tissue kinematics 

created by functional orofacial behaviors, such as speech, is from DC to < 20 

Hz.86 

Heft and Robinson used a variety of somatosensory tests, including 

temperature and two-point discrimination, to demonstrate an increase in 

detection thresholds in glabrous orofacial skin illustrating generally decreased 

sensitivity in a cohort of older participants.163 Results from this study identified 

some general changes in somatosensation in older adults; however, the 

relatively broad and uncontrolled nature of the test stimuli provided less than 

optimal estimations of the fine-grained sensory capacities necessary to support 
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skilled orofacial behavior. Finally, Wong and colleagues assessed tactile spatial 

acuity on the fingers and the lips of blind individuals proficient in Braille as 

compared to age-matched controls.164 Although not their primary area of interest, 

these investigators found a main effect of age for decreased sensory acuity. The 

behavioral consequences of alterations in somatosensation have not been well 

documented. It is possible that the effects of decreased sensation with age are 

not perceived until the system has been sufficiently perturbed by sequelae from 

neurologic injury.  

 

Speech Perception and Production in Clinical Populations 

Assessment of Dysarthria 

Speech dysarthria can be studied and assessed by clinicians in two 

general ways. The first and more common assessment method is through a 

mostly perceptual (subjective or observational) evaluation that at best may 

include objective acoustic parametrics and the appreciation of neurological 

confirmatory signs. In general, perceptual characterizations of dysarthria are 

generally based on acoustic and overt production features of prosody, loudness, 

rate, and articulatory precision. While some of these acoustic and observable 

production measures can be assessed objectively, they do not provide a direct 

measure of the underlying physiological function. Indirect physiological 

assumptions can be made from perceptual assessment measures; however, the 

validity and reliability of those assumptions are tenuous at best.  
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Clinically, the accepted guidelines for examination of motor speech 

disorders are comprised of four components: 1) a detailed case history, 2) an 

examination of speech structures during static movements of non-speech tasks, 

3) assessment of perceptual speech characteristics, and 4) subjective 

assessments of intelligibility, speech naturalness, comprehensibility, and 

efficiency of production by the SLP.9 In some clinical settings, the SLP’s 

experience is the primary (and only) resource available and is heavily relied upon 

to diagnosis and treat speech production deficits. This may be of concern given 

that SLPs may have varying internal references for what constitutes as 

acceptable “intelligibility” based on their years of experience and background in 

listening to speech from individuals with neurologic impairments. 

A second approach to assessment of dysarthrias in the clinical setting is 

through a direct physiologic approach.57 Many clinicians consider the oral 

mechanism exam to operate as a reliable and valid physiological approach. 

Unfortunately, oral mechanism exams are not always an accurate or reliable 

measure of the underlying speech physiology, but rather should be considered 

as generally subjective in nature. Oral mechanism exams rely on a clinician’s 

characterization of articulatory subsystems that are not calibrated to a known and 

unbiased metric and can be easily influenced by a clinician’s level of experience. 

In addition, the typical oral mechanism exam employs non-specific measures of 

oromotor competency through various static or non-speech measures that are 

not well suited to provide sensible indicators of real-time speech production. 
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Thus, it is possible that oral mechanism examinations are not sensitive enough to 

specify distinguishing factors of dysarthria. 

Physiologic Laboratory Assessment Measures 

In the laboratory setting there are other means of assessing dysarthria 

available, including electromagnetic articulography (EMA), electropalatography 

(EPG), and custom-made tongue and lip force transducers that have been used 

in populations with traumatic brain injury and stroke. 

Traumatic Brain Injury. Several instrumental assessment methods have 

been used to study dysarthria after TBI, providing researchers with unique and 

critical insights to the kinematic properties and force production capacities of 

articulatory sub-systems in this population. The instrumental approach with the 

greatest representation in the literature concerning traumatic brain injury is by far 

electromagnetic articulography (EMA).15,165,166 In an early study using EMA, 

Jaeger et al., identified significant differences in syllable durations, peak velocity, 

and amplitude ratios between control and severe TBI speakers.165 In more recent 

studies, significant differences in the speech patterns of individuals with TBI have 

been more difficult to identify when compared to feature-matched controls.15,166 

Kuruvilla and colleagues noted that the rate of production of /t/ and /k/ were 

comparable between control, mild TBI and severe TBI groups. In fact, no 

significant differences were found between any of the groups for syllable or 

sentence productions conditions, with the single exception of the release of /t/ in 

sentences when comparing the severe group to healthy controls.166 In a different 

investigation of subjects with TBI, no statistically significant difference in tongue-
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jaw coordination during dynamic speech tasks was noted.15 It is of interest that 

perceptual differences were clearly observed; however between-group kinematic 

differences were not found. It is possible that the apparent disconnect between 

physiological factors and acoustic output may be indicative of differences in the 

selected experimental tasks or conditions. This disconnect suggests the need for 

better-defined task conditions and/or the use of methods with sufficient resolution 

to detect fine-grain changes in speech physiology that affect the acoustic stream.  

 Kinematic study of speech dysarthria in people with TBI have also 

benefitted from the use of electropalatographic (EPG) assessments.167 EPG has 

been used to identify changes in articulatory temporal patterns of tongue-to-

palate contact. In TBI groups specifically, prolonged durations in various phases 

of consonant production (increased tongue-to-palate articulation) were noted 

during the production of probe syllables. These observations mirror data by 

Bartle and colleagues15 who compared spatio-temporal aspects of jaw and 

tongue motion. In general, EPG studies have been successful in identifying three 

tongue-to-palate contact patterns in the speech of TBI subjects related to speech 

imprecision noted during perceptual assessment. The three identified patterns 

were: articulatory undershoot, articulatory overshoot, and placement of the 

tongue further posteriorly than normally expected.168 

 Custom-made pressure transducers have been used to assess tongue 

strength, endurance, fine pressure control, and rate in TBI subjects.169 In a study 

by Goozee et al., comparisons between groups of TBI subjects and healthy 

controls were conducted using repetitive movements within a non-speech 
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context. No statistically significant differences were found between groups in 

tongue strength and fine pressure control. Further statistical analysis revealed 

only weak correlations between non-speech tongue parameters and the altered 

perceptual characteristics observed in the traumatic brain injured group. These 

results seem to give more weight to the Gracco and Abbs hypothesis introduced 

earlier in that speech is a goal-directed behavior in which the entire intended 

speech goal is important. Simply put, speech production is more than the sum of 

its parts. Speech disturbances may benefit from analyzing not only the individual 

articulators, but how they interact at the behavioral level. 

 In a study by Barlow and Burton,36 a custom-made load-sensitive 

cantilever was used to sample compression forces from the lips at midline in a 

small cohort of TBI patients. Varying results were identified during the 

performance of a ramp and hold force control task for the TBI cohort. Three of 

the 4 individuals demonstrated a significant force overshoot during the ramp-and-

hold production. The authors suggested that the inability of TBI subjects to 

adequately gauge compression forces might reflect impairment in motor unit 

recruitment and regulation. It was further hypothesized that sensory feedback for 

appropriately grading the effort level of the oromotor system may also be related 

to the observed force control deficits.  

 While speech dysarthria in TBI populations is the most studied 

physiologically and objectively, the general consensus of these reports is 

somewhat scattered and still not well defined. There is only cursory evidence that 

non-speech assessments can be related to perceptual intelligibility features.169 In 
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fact, few studies have been able to identify consistent and significant differences 

in task performance between dysarthric TBI populations and their normal 

controls, and even fewer have been able to correlate performance findings to 

perceptual characteristics directly. Again these data, on the whole, suggest the 

need for better-defined task conditions and the development of methods with 

enough resolution to detect small changes in speech physiology. Clearly, 

instrumental/physiological approaches must posses the necessary degree of 

resolution to be of increased value and as such, useful to the practicing clinician.  

Cerebral Vascular Accident (CVA). Apraxia of Speech (AOS), while not 

generally considered a classic form of dysarthria, is nonetheless a specific 

subtype of neurogenic speech disorders that typically results after a stroke. AOS 

is associated with a deficit in speech motor planning, versus a clinically apparent 

deficit in speech execution. Because of the inability to correctly plan speech 

movements, kinematic studies in AOS may be well suited to objectively assess 

production differences in these individuals.  

In a series of single-subject studies, Barry170-172 found similar EPG 

patterns of tongue-palate production as those previously reported for TBI 

populations (see discussion above). Articulatory overshoot, altered tongue-to-

palate contact, reduced duration of the closure phase for fricatives, and 

increased duration time on approach for plosives and stops were all features 

shared by the AOS speaker and TBI subjects. Although classical categorizations 

of speech dysarthria type have attempted to separate dysarthrias based on injury 

type and location, these studies have identified similar disordered speech 
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characteristics for apraxia of speech and traumatic brain injury. Future 

classification systems may chose to incorporate elements of timing and 

articulatory placement to distinguish dysarthria types. 

In a different study comparing the oral function of 16 participants with 

stroke to matched controls, measures of lip strength, endurance, and rate of 

movement were found to be reduced in AOS clients.173 Although physiologic 

differences were identified in this report, the researchers were unable to observe 

a direct relationship between the collected kinematic data to their perceptual 

observations. Finally, several studies have been completed using EPG to 

compare healthy controls to individuals with dysarthria and aphasia.170,174-177 In 

these reports, various timing and duration differences were noted between the 

two groups, particularly in the coordination of tongue-to-palate movements, 

described as misdirected articulatory gestures.175,178 In these studies, 

researchers found that although individuals with apraxia of speech had spatially 

normal gestures in EPG patterns, their movements were not at the correct place 

in the target utterance. This is of great importance as participants perceptually 

produced the target utterance, but demonstrated abnormal production 

patterns.175,178  

In a review by van Lieshout,179 studies using EMA were identified that 

described motor disruptions to individual articulators in speech dysarthria. 

General movement patterns for an individual with AOS and Boca’s aphasia were 

found to be similar to healthy controls with specific task-related differences in 

upper lip movement and overall lip coordination.179 Bartle-Meyer et al.180 
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examined tongue kinematics in relation to words of increasing length for 

individuals with AOS as compared to feature-matched controls. Increased 

movement durations and larger tongue movements for some specific consonant 

tasks were observed. Inconsistent results were found in a second study by 

Bartle-Meyer et al.181 when comparing articulatory coupling in tongue-tip and 

tongue-back multisyllabic stimuli.  

Although group data did not show strong trends, overall, individuals with 

AOS demonstrated a decreased ability for independent functional movements, 

particularly in relation to the tongue and jaw. AOS secondary to cerebral vascular 

accidents is an area that clearly calls for more investigation using objective 

instrumental approaches. Existing studies, although limited by small sample 

sizes and inconsistent results, have at least begun to illuminate the unique 

behavioral characteristics of AOS. Even though AOS has traditionally been 

characterized as a purely motor planning disorder, unique kinematic production 

features are seemingly identifiable and thus available for future studies.  

While physiologic assessments are providing a means of objective 

assessments of dysarthria in the laboratory, currently, clinicians rely on 

perceptual assessment of dysarthria. It is important to note that as early as the 

1970s, researchers have suggested that disorders of speech may be associated 

with oral tactile perception deficits,182 yet standardized sensory assessments are 

not utilized or unavailable to clinically assess and diagnosis speech dysarthria at 

this time. 
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Treatment of Non-Progressive Speech Dysarthria 

With such a complex and multifaceted disorder, clinicians should expect 

an evidence base for treatment approaches to be as multifaceted as the disorder 

itself. Unfortunately for Speech-Language Pathology, the opposite has been 

found to be true. In a previously published systematic review by Sellars et al.,183 

the authors confined their search to include randomized controlled trials. When 

no randomized controlled trials were found, the authors concluded that “there is 

no evidence of quality” to support the effectiveness of one type of speech-

language therapy over another type for a population of adults with non-

progressive brain injuries that resulted in speech dysarthria.145(pg.2) Sellars et al. 

called for more research on the topic and repeated their review of RCT’s on this 

topic again in 2002 and 2005 with the same results.184,185  

Although no randomized controlled clinical trials have been identified, 

there have been several clinical intervention case studies and single-subject 

designed studies that can aid clinicians in identifying appropriate clinical 

treatment techniques for their clients. In a review by Palmer and Ederby,186 the 

authors organized several single-subject, cohort designs, and suggested 

treatment programs by the intervention approach for any stable dysarthria. 

Palmer and Ederby searched literature from the 1970s to 2006 pertaining to all 

types of speech dysarthria; they were able to identify 23 studies that fit their 

inclusion criteria, and only 8 that were published after 1996. The authors regard 

this lack of publication as evidence that treatment of speech dysarthria is an 

under-studied area of research.186  
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Several authors have stated that the principle goal of behavioral treatment 

for motor speech disorders is to attempt to maximize the effectiveness, 

efficiency, and naturalness of communication to achieve improvement in overall 

speech intelligibility.7,187,188 While this definition is an agreed upon ideal for 

therapy, what intervention clinicians choose to be most effective, or efficient, or 

geared toward increasing intelligibility is still under debate, partly because the 

field of motor speech disorders lacks clarity on an agreed upon definition of what 

“intelligibility” is and what factors can affect intelligibility. Duffy offers one 

definition as, “the degree to which a listener understands the acoustic signal 

produce by the speaker.”7(p.96) Unfortunately, this definition does not clarify what 

goes into the acoustic signal, and most importantly isn’t focused on the listener 

understanding the intended message of the speaker. Several factors could alter 

speech intelligibility including context and gestures, as well as rate, prosody, 

articulation, and respiration.7,8,189 

Many treatment approaches to dysarthria are a direct reflection of more 

motor-based ideals, and possibly reflect the name of the field itself, “motor 

speech disorders”. This next section contains a brief introduction to various types 

of treatments employed in this population with more discussion on the validity of 

the treatments given later in the review. Oral motor exercises for “strength”; 

pacing boards, metronomes, and alphabet boards for rate control; singing 

exercises for fluency; and articulation therapy for a direct symptomatic approach 

have all been used to treat dysarthria. 
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 Singing Exercises. Melodic intonation and singing therapy have gained 

some popularity for the treatment of non-progressive speech dysarthria; 

however, little empirical evidence exists to support its use. Current studies are 

case studies, present preliminary data, or have been done in a Parkinsonian 

dysarthria group.190-192 In a pilot study by Tamplin,192 individuals demonstrated a 

perceptual improvement post-treatment of speech naturalness using various 

intonation and singing exercises. Although with a small sample size (n=4) and 

non-significant objective tests, more research would need to be done on the use 

of singing to improve intelligibility or speech naturalness before warranting 

clinical use. 

Prosody. There are several distinct prosodic characteristics that influence 

and shape the acoustic signal sent to the listener. Prosodic characteristics of 

speech can include pitch, loudness, silence, and segment durations.8 One 

therapy that has been successful in treating prosodic features of speech, 

specifically loudness, for individuals with dysarthria as the result of Parkinson’s 

Disease (PD) is the Lee Silverman Voice Treatment® program.193-196 In a study 

completed by Wenke et al., researchers used the LSVT® program for individuals 

with non-progressive speech dysarthria and were able to demonstrate increased 

intelligibility through changes in many perceptual characteristics, such as 

loudness, articulatory precision, sustained phonation, and fundamental frequency 

ranges after treatment.  

 Rate Control Methods. Speech rate has been considered one of the more 

easily modifiable aspects of speech and altering speech rate has been shown to 
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increase speech intelligibility.197 Therefore, it is not surprising that attempting to 

slow the speech rate of individuals with dysarthria has been a popular clinical 

approach in various types of dysarthria using rate drills, alphabet boards, and 

rate training using a metronome.198-203 Although many of these studies illustrated 

positive effects of increasing intelligibility through rate control methods, they may 

not be appropriate for this population, given that some of the studies were 

completed with individuals with Parkinson’s disease.202-204 It is plausible to 

hypothesize that slowing speaking rates could improve articulation in the non-

progressive speech dysarthria population as well because it provides more time 

for tactile feedback to be utilized and incorporated into the speech gesture, 

however this notion has not been empirically determined.  

Phonation Therapy. Individuals with speech dysarthria can exhibit 

difficulties with phonatory characteristics such as problems with breathiness, 

short phrases, monoloudness and monopitch.7,8 For several of these deficits, 

surgical interventions and prosthetic devices are available, demonstrating the 

connection between phonatory characteristics such as pitch alterations and 

improved speech intelligibility.205-209 For behavioral treatment approaches, Lee 

and McCann 210 attempted to increase speech intelligibility of bilingual Mandarin-

English speakers by focusing treatment on respiration and improving participant 

phonation. Although improvement was seen in English, results from this study 

demonstrated that phonation therapy significantly improved intelligibility in 

Mandarin, a language reliant on pitch/tone changes, more than English. 
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Non-Speech Oral Motor Exercises. Non-speech oral motor exercises 

(NSOMEs) are a popular and commonly used exercise program for children and 

adults with motor speech disorders.186,201,211 With little empirical evidence to 

support there use, it was startlingly to find that 85% of respondents to a national 

poll reported using NSOMEs to treat dysarthria.211 Proponents of NSOMEs claim 

the non-speech exercises are used to improve the strength, endurance, tension 

or force of the orofacial muscles.186 In fact, in a review paper by Weismer, he 

comments that the “frequent appeal to oromotor, nonverbal tasks is misguided.” 

212(p.315) NSOMEs employ the use of exercises to target a deficiency in one area 

of speech production based off of assessment following the Mayo Clinic view 

created by DAB (discussed below). Unfortunately, this technique of dividing the 

parts of the speech system ignores the basic tenet that speech is an integrative 

task using motor control, tactile and auditory feedback, and cognitive processing. 

Speech is greater than the sum of its part and non-skilled oral motor exercises 

disregard this fact. After a review of literature concerning non-speech oral motor 

exercises, Weismer concludes “there is neither theoretical nor empirical support 

for a continued focus on oromotor, nonverbal tasks in our field.”212(p.342) 

There is an important distinction to acknowledge between non-speech 

exercises and unskilled oromotor exercises. In recent work using BOLD fMRI and 

nonsense vocal tract gestures as compared to speech sounds, researchers 

found common neural substrates in overlapping activation of speech and skilled, 

yet non-speech movements.213 This study suggests that the use of nonsense 

words can activate speech structures because they still require skilled, 
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coordinated orofacial movements. It may be hypothesized that a series of skilled 

oromotor exercises (SKOMEs) may have more empirical support for the 

treatment of non-progressive speech dysarthria, but that is a topic that is still very 

much up for debate in the field.  

Articulation Therapy. Using more of a direct, symptomatic approach, some 

articulation therapy is often incorporated into treatment plans for dysarthria. 

During therapy, patients are given specific articulatory targets and feedback 

regarding their accuracy.186,201,214 In a more recent study, Robertson completed a 

combination of orofacial exercises, diadochokinetic rates (DDKs), sound 

sequences and articulation exercises with simple C-V-C and complex sound 

combinations and found that participants demonstrated increased intelligibility 

after a 10 week intervention program.201 It is possible that articulation therapy 

approaches, with their interplay of skilled speech movements, auditory feedback, 

and clarity of response judgments from the clinicians, could provide the 

necessary combination of skilled motor and sensory exercises for improved 

speech.  

The American Speech-Language and Hearing Association (ASHA) has 

made a call for the use of Evidence-Based Practice (EBP) therapy measures215 

encouraging clinicians to use the best research available, his/her clinical 

expertise, and the client’s values. If the goal of speech therapy is to improve 

overall speech intelligibility, there are several available options for clinicians to 

choose from when determining how to treat speech dysarthria in adults with non-

progressive secondary to neurologic events. Determining if these interventions 
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are best practice is another matter. The wide variety of treatment types available 

may be an artifact of the individual-nature of dysarthric speech. As each 

individual’s dysarthria is somewhat unique based on location of injury, severity of 

dysarthria, pre-morbid speech abilities and characteristics of the individual’s 

speech, it is possible to hypothesize that no one treatment technique may work 

for everyone. However, because so few well-controlled clinical studies have been 

done, it is difficult for the field to reach consensus on what constitutes the best 

approach. Clinicians are left to rely on their sense of clinical judgment and 

interpret the needs of their client on a case-by-case basis. Although, this should 

arguably be done with every client, the literature available on the topic does not 

aid the clinician in determining a best-practice approach. Clinically, it is most 

likely appropriate to combine multiple treatment approaches based on the client’s 

needs and goals for therapy, although the literature available for review does not 

address this assumption. 

 

Empirical Needs in Understanding Speech Production and Perception in 

Clinical Populations  

The Patient-Clinician-Laboratory (PCL) model,216 found in the athletic 

training literature, encourages the bench-to-bedside model of using patient goals, 

clinical research, and laboratory science to produce higher-quality and more 

translational research to meet the functional needs of the patient. Unfortunately, 

particularly in the assessment and treatment of speech dysarthria, there appears 

to be gap between the theoretical models, the laboratory/bench research and 
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application in the clinical setting. Given the previous review, there appears to be 

four major deficiencies in our current appreciation of motor speech disorders that 

could better help our understanding of speech dysarthria. These deficiencies 

include: 1) the lack highly-skilled assessment and treatment tasks that sufficiently 

challenge the speech system; 2) the appreciation of the sensory mechanisms 

involved in speech disorders and how this information can be used for better 

assessments and treatments of dysarthria using finely-tuned, skilled tasks; 3) the 

need for more translational research that can best connect the laboratory 

researcher to the clinician; and finally 4) an understanding of how aging can alter 

the previous three areas of concern. 

Skilled Assessment and Treatment Measures 

“Although it is not reflected in the classical literature, there appears to be a 

substantial physiological and neurophysiological basis for expecting differential 

impairment of speech motor subsystems across classes of dysarthric 

speakers.”37(p.616) This quote from Barlow and Abbs, made in 1983, illustrates the 

importance of needing skilled clinical assessments that can help SLPs (and other 

health professionals) classify speech dysarthrias with a greater degree of 

accuracy and consistency. In laboratory and clinical assessments and with 

interventions for individuals with non-progressive speech dysarthria, the use of 

isolated movements or repetition of a single phoneme is a popular means to 

assess and treat dysarthria. However, gross non-speech and/or isolated syllable 

tasks, (not controlled for speech-like forces) may not provide a sufficient 

diagnostic challenge to reveal disrupted function of primary articulators within 
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various classes of motor speech disorders or provide adequate therapeutic 

interventions to rehabilitate the vocal tract system. Upon closer inspection of 

many of the above reviewed studies, statistically significant results were typically 

not found until the sensorimotor system was adequately challenged through the 

performance of more dynamic tasks.15,36,166,167 Based upon these considerations, 

it is suggested that not only should greater importance be placed upon objective 

instrumental approaches for evaluation and therapeutic practices, but more 

importantly, that increasingly complex tasks should be incorporated to sufficiently 

challenge the disordered speech system. Challenging the speech production 

system may operate to reveal the performance boundaries and limitations faced 

by the system that directly impact the real-time dynamics of speech production.  

As described by Dworkin,217(p.187) “A good percentage of clinical time is 

spent treating the articulation subsystem in patients with motor speech disorders. 

Speech clinicians realize, however, that disturbances of the articulation 

subsystem rarely occur in isolation. Coexisting respiratory, resonance, phonatory 

and/or prosodic subsystem breakdowns are not uncommon.” Here, Dworkin is 

pointing out that disruptions can occur within any part of the vocal tract system, 

and often occurs at the point of interaction of the entire system. This is why 

placing the isolated sounds and syllables into the context of running speech is 

vital to testing and re-training the vocal tract system…simply put, context 

matters.54,218 Clients seeking treatment for motor speech disorders would most 

likely benefit from the use of relevant speech tasks in context, highlighting again 
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that speech production is the culmination of multiple subsystems working 

together. 

Assessment and Treatment Using Sensory Channels  

Given the ubiquitous nature of the DAB/Mayo Clinic model and the heavy 

emphasis on motor aspects in the assessment and treatment of dysarthria, there 

is one glaringly large gap in our understanding of dysarthria: sensation. Sensory 

inputs (somatosensory and auditory afference) are important for not only 

accurate speech perception, but speech production as well, and maybe take on 

even greater relevance after neurologic injury. In an edited work by Maassen,26 

Kent and Rosen suggest that, “A long term goal of research on motor speech 

disorders has been to document rather than simply infer, the sensorimotor 

impairments. This remains an important and largely unrealized, goal.”(p.286) 

Primarily, the field of Motor Speech Disorders (as the name implies) follows a 

predominantly “motor” point of view. 

SLPs have traditionally been trained to focus on the motor aspects of 

speech disorders with little concrete consideration of sensory factors that may be 

contributing to the features of a given disorder. This oversight suggests that, on 

the whole, we are inadvertently missing half of the equation in our assessment 

and treatment of speech dysarthrias. For example, in the studies reviewed 

earlier, imprecise tongue movement is consistently identified as a factor in the 

perceptual characteristics of dysarthria. For correct tongue placement and 

manipulation, tactile and proprioception are critical feedback signals to correct 

and maintain performance accuracy.11 The ability to perceive the precise 
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placement of the tongue and to adjust position to match an acoustic target 

requires a peripheral sensorium with a high response fidelity to movement-

related feedback. Considering that therapeutic intervention primarily 

consists of manipulating a patient’s sensory environment to drive changes 

in motor output,77 understanding the sensorimotor physiologic 

characteristics of speech dysarthria may provide the clinician with useful 

insights for tailoring and maximizing therapeutic goals.  

Kent and Rosen’s position has two important implications for clinical 

practice. First, clinicians have the responsibility to document impairments as 

objectively as possible using direct physiologic assessment in context, as 

discussed above. Second, greater appreciation and better understanding of the 

relationship between sensory (both tactile and auditory) and motor function in 

speech production disorders may potentially lead to improvements in our clinical 

understanding of speech dysarthrias, and inform the development of more 

focused and efficient clinical interventions.  

Many of the features of speech production disorders that clinicians note 

perceptually are, in fact, sensorimotor deficits that may have unique kinematic 

and/or force correlates that may distinguish one deficit sub-type from another. 

For example, the most frequently measured sensorimotor features in an 

individual with speech dysarthria are rate, paralysis, paresis, and coordination.57 

Although these features are key characteristics of various speech dysarthrias, 

SLPs are generally trained to rely on subjective clinical judgment to determine 

the degree to which these factors are impaired or different from normal speakers 
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or other etiologies. The incorporation of objective instrumental measurements 

from evaluation through treatment would benefit practicing clinicians, allowing 

them to better determine the relationship between behavioral performance 

changes and perceptual features. Such an understanding can only operate to 

improve the clinical experience for the patient.  

Need for (more) Translational Research 

As mentioned above, there is a dramatic inconsistency between research 

in the laboratory setting and its translation to clinic practice. First, there is a need 

for translational work in diagnostics. Traditionally, differential diagnosis and the 

development of treatment plans have been based on perceptual (subjective) 

characteristics alone without employing objective instrumental assessment 

strategies to characterize the physiological properties of participating articulatory 

subsystems. Yet, considering that neurological damage will result in various 

degrees of aberrant speech physiology that, in turn, may lead to significant 

abnormalities in perceptual speech characteristics,34 the need for physiologic 

assessment appears highly warranted. Various physiologic assessments are 

done in the laboratory setting, but have not yet been translated in to clinical 

settings; most likely due to time needed to train clinicians and perform the 

assessment, cost of equipment, and the fact that current clinic models of 

assessment do not advocate its need. 

 Second, translational work from laboratories must be incorporated into 

treatment programs and assessment development. The World Health 

Organization’s International Classification of Functioning, Disability, and Health 
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(ICF) can be a useful framework for planning speech interventions in dysarthria;33 

particularly if clinicians are aware of personal and environmental factors that may 

alter the normal baseline of speech intelligibility, as well as what the patient’s 

functional goals are for participation level in their activities of daily living (ADL’s) 

or social environment. A better understanding of principles of neuroplasticity and 

motor control theories and how they can and cannot be applied to speech 

production, may result in better therapy outcomes. Unfortunately, the extent of 

high quality evidence for the treatment of non-progressive speech dysarthria is 

nominal at best.186  

Effects of Aging on the Coupling of Perception-Action in Speech 

The fourth identified gap in the current appreciation of the motor speech 

disorders pertains to alterations in the sensory and motor production aspects of 

aging adults. As incidence and prevalence rates for stroke and traumatic brain 

injury continue to increase for individuals over 65 years of age,2 it will be 

important for clinicians to accurately identify differences in normal aging 

processes versus deficits from neurologic injury or disease. Additionally, 

assessment protocols and treatment paradigms may need to be altered to 

accurately diagnose and treat disorders in this special population. 

 Current general motor control theories, including those for speech motor 

control, posit that the planning and production of skilled behaviors are highly 

dependent on the quality and integrity of both sensory and motor 

elements.19,42,141,142,219 As such, the lack of a fine-grain appreciation of aging-

related changes in orofacial perceptual sensitivity may not be trivial. Altered 
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levels of somatosensory transduction and transmission along medial lemniscal - 

thalamocortical pathways may likely impact the activity-dependent maintenance 

and integrity of skilled orofacial movements, given the tight perception-action 

coupling that exists during functional orofacial behaviors.97 The distinctive 

musculo-cutaneous substrate of the lower face underling the generation of 

complex three-dimensional deformations during orofacial behaviors86 is 

hypothesized to be responsible for the production of salient movement-related 

afference necessary to maintain skill in the orofacial area.76,77,79,137,138,220-222  

Unfortunately, little is currently known about the effect of decreased 

vibrotactile detection for behaviorally-related processes underlying the 

performance of normal orofacial activities in the aging population. Some 

indications may be obtained from studies that have demonstrated that alterations 

in vibrotactile sensitivity in human foot sole may be a contributing factor to 

changes in gait patterns.154 Alterations observed in this study may have a similar 

effect as it pertains to behaviors such as speech production; although at the 

auditory-perceptual level, participants may continue to maintain functional 

speech abilities. As sensory experiences in the orofacial region are primarily the 

result of self-generated action, ongoing learning and updating of central orofacial 

sensorimotor representations are influenced by those self-generated sensory 

experiences.105 Significant alterations in ones capacity to detect low-level 

threshold activity may have the greatest implications on informing orofacial 

behavior after neurologic injury as therapists are working to restore functional 
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behaviors within the context of a system that may have significant pre-morbid 

deficits in the ability to detect sensory events consequent to the therapeutic task. 

Mechanical and proprioceptive sensory feedback during speech may 

become even more important for maintaining skilled speech due to the decrease 

in auditory feedback in aging adults secondary to hearing loss. A recent study 

reported hearing losses in approximately 33% of individuals between 61-70 years 

and more than 80% of individuals 85 years and older.223 In fact, Anderson and 

colleagues discussed the decrease in neural processing rates and neural 

inhibition leading to decreased auditory processing for acoustic information which 

may present older adults with temporal synchrony discrepancies for rapid speech 

perception.224 This delay in speech perception may have greater implications for 

training and therapy after a neurologic event.  

Rationale and Research Questions 

The application of the DIVA model in various studies highlights not only 

the importance, but also the absolute necessity of quality sensory feedback for 

speech-related actions. The lower face contains specialized mechanoreceptors 

at spatial positions ideal for transducing stretch and strain of the facial skin. 

These mechanoreceptors provide afferent feedback centrally, allowing the lower 

face to behave as a highly coordinated system, while still maintaining adaptability 

to incoming stimuli to complete skilled, functional oromotor behaviors, such as 

speech or swallowing.76-79 In fact, consistent with hypotheses yielded from the 

DIVA model and portions of the Motor Theory of Speech Perception, researchers 

have hypothesized that much of the sensorimotor feedback from the lower face is 
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likely achieved through self-generated movement-related afference allowing an 

individual to continuously update and maintain their own skill level.105 The 

distinctive muscle-to-skin relationship in the lower face allows for the generation 

of complex 3-dimensional deformations of the facial skin, providing an anatomical 

substrate for the tight temporal synchrony of cutaneous somatosensation and 

performance features of skilled speech behaviors. 35,79,103,130,225 The sensory 

events that are correlated with active orofacial skin deformations of stretch and 

strain provide a rich array of afferent discharges presumed vital for speech 

production and other orofacial behaviors.76,77,137,138,222  

Overall, it is possible that patients, especially older adults, would benefit 

from speech rehabilitation therapy strategies tailored to their needs and that take 

advantage of somatosensory and auditory feedback, making these routes into 

the CNS more salient during interventions. Before treatments can be identified 

and implemented though, further assessment of changes in somatosensory and 

skilled low-level force targets in healthy aging adults is needed. The current 

dissertation was designed to begin characterizing changes in labial vibrotactile 

detection thresholds, accuracy in achieving low-level force endpoints, the 

relationship between these sensory and motor assessments, and finally how the 

labial sensorimotor relationship may change as a function of aging. In the next 

chapter, I will discuss the specific questions and methodologies used in this 

study.  

 Given the literature review above, this dissertation will address the 

following central questions: Is there a correlational relationship between 
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labial vibrotactile detection thresholds and non-speech skilled low-level 

force control measures in healthy adults? Are the features of this 

relationship sensitive to changes as a function of healthy aging?  

Sub-questions will include: 

• Do 5 and 10 Hz vibrotactile detection thresholds change with aging? 

• Does accuracy in a skilled, non-speech dynamic force task change with 

aging? 

o For the static force condition, how does reaction time, slope, and 

mean force hold for time phase 1 and 2 change in aging? 

o For the slow and fast ramp-and-hold force conditions, how does 

reaction time, slope, and mean force hold for time phase 1 and 2 

change in aging? 

• What role do variables such as speech usage, smoking history, and pure 

tone hearing thresholds play in this sensorimotor relationship? 
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Chapter Three 
 

Methods 
 

The primary aim of this observational dissertation was to identify and 

describe the relation between labial cutaneous sensitivity to vibrotactile inputs 

and precision force control tasks in three different age bracketed cohorts of 

adults, with particular attention to how the labial system’s perception-action 

relationship changes as a function of increasing age. 

Participants 

An apriori Mann Whitney test with 80% power and a 2-sided alpha of 0.1 

was used to determine that 20 participants were needed in each of three 

experimental groups for adequate power to detect a significant difference 

between groups. Alpha was set at 0.1 given the preliminary observational nature 

of this study. As such, a total of 60 community-dwelling adults (40 females; 20 

males) who self-reported as healthy were recruited from the greater Lexington, 

KY area. All participants were naïve to the testing protocol. Participants were 

divided into three age groups: Young (18-39 years; mean 26.2 years), Middle 

(40-64 years; mean 52.3 years), and Older (65 + years, mean 72.8 years). 

Participants were screened to ensure they were alert, able to give consent, and 

met all study inclusion criteria listed below. This study was approved by the 

University of Kentucky Office of Research Integrity and Institutional Review 

Board (Protocol #: 13-0263-P2H). All screening information was gathered 

through self-report and completed prior to any assessment procedures. All 

participants: 
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• Reported that they were free of any craniofacial anomolies, injuries, or active 

lesions to the lower face, neurological injuries (such as stroke or traumatic 

brain injures), or other progressive neurologic disorders such as dementia or 

Parkinson’s disease 

• Indicated feeling in “good” general health or better on the day of testing  

• Denied being on, to the best of their knowledge, any medications that could 

cause excessive drowsiness  

• Denied having had a recent dental visit in the last month that involved oral 

surgery or any form of a local anesthetic 

A total of sixty-two individuals were screened. Two were excluded from the study; 

one participant had multiple orofacial surgeries in the last three years and the 

second had a history of cerebral hemmorhage. 

Subjects were audio-recorded reading The Grandfather Passage, a 

common procedure in clinical testing procedures, to ensure perceptually normal 

speech intelligibility.7 All participants were judged to be 100% intelligible at the 

paragraph level as confirmed by two outside speech-language pathologists. Pure 

tone hearing threshold assessments were completed at 500, 1000, 2000, 4000 

and 8000 Hz. Participants were asked to identify their current level of speech use 

on a 5-point scale with larger numbers indicating increased average speech use. 

(See Appendix A for a breakdown of each speech use category). Partcipant 

group data for age, sex, smoking history and puretone hearing threshold average 

are reported in Table 1.  
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Table 1: Participant Demographics 
Demographic data for each group including: age range, average, and standard 
deviation, male to female ratio, smoking history frequency counts for current smokers 
“yes”, people who have never smoked “no” and people who have smoked and quit 
“former”, and pure tone threshold averages for the right and left ear in Hz. 
 

 Age 
(SD yrs) 

Male: 
Female 

Smoking History 
(Response: N) 

Pure Tone 
Avg (dB) 

Young 
19-35 

Avg 26.2 
(4.85) 

 
6m:14f 

Yes: 1 
No: 18 

Former: 1 

Right: 10.38 
Left: 9.44 

Middle 
42-64 

Avg 52.3 
(6.54) 

 
5m:15f 

Yes: 1 
No: 12 

Former: 7 

Right: 14.56 
Left: 14.19 

Older 
65-84 

Avg 72.8 
(5.73) 

 
9m:11f 

Yes: 3 
No: 9 

Former: 8 

Right: 28.69 
Left: 27.56 

 

Central Hypothesis 

Is there a correlational relationship between labial vibrotactile detection 

thresholds and select parameters of skilled orofacial force control in healthy 

adults? If so, what is this relationship and how does it change as a function of 

aging?  The null hypothesis for this experiment is that there are no correlational 

relationships between labial vibrotactile sensation capacity and parameters of 

skilled, low-level force control. The alternative hypothesis states that there will be 

a correlation between vibrotactile sensation capacity and parameters of skilled 

force control and that this relationship changes as function of healthy aging. We 

hypothesize a negative correlational relationship in that as vibrotactile detection 

thresholds increase (demonstrating less sensitivity) parameters of skilled force 

control will decrease and/or demonstrate increased variability. The following 

force control measures were included in this study: reaction time, rise time, peak 

force, and mean force during two hold phases. See Table 2 for definitions of 



www.manaraa.com

 

 63 

each force variable and Figure 3 for a stylized schematic of a participant’s 

response.  

 
Table 2: Force Variables and Operational Definitions 
 
Variable Operational Definition 

Reaction Time 
Time interval from the moment the light-emitting diode 
(LED) was turned on until labial force had reached 10% of 
peak force. 

Rise Time 10% to 90% percent intercepts during force recruitment 
task phase 

Peak Force Maximum amplitude of force during the force ramp phase 
Mean Hold 
Force 

Mean force output during each of two consecutive 1.5 
second epochs (Time 1 and Time 2) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Stylized Schematic of Force Control Measures  
Stylized schematic of a participant’s response during the static force condition 
programmed to 0.50 N to illustrate the variables collected. (Adapted from Barlow & 
Burton, 1990)36 
 

Labial Vibrotactile Detection Threshold Procedures and Analysis 

Cutaneous Stimulation Delivery System. Sinusoidal vibrotactile inputs 

were delivered to the vermilion of the left lower lip (LL) at a point halfway 

between the mid-sagittal plane and the oral angle via a custom-made mechanical 
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stimulus generator system mounted onto an articulated microscope arm. The 

stimulus delivery system consisted of a Bruel & Kjaer (Model 4810) Minishaker, a 

flat-surfaced nylon stimulus probe (surface area = 0.5 cm2), and a rigid surround 

(17 millimeter [mm] outside diameter with a probe-surround gap = ~1 mm). A 

Schaevitz micro-miniature linear variable differential transformer (LVDT) was 

serially coupled to the outboard end of the Minishaker to provide displacement 

information (1 micron resolution) of the probe (Figure 4). The output of an 

arbitrary digital waveform generator (Wavetek Model-29) was conditioned by a 

power amplifier (Bruel & Kjaer, Model 2706) and provided the input signal to the 

Minishaker. Synthesized waveforms were 1 second in duration with a 150 

millisecond linear rise-fall decay to eliminate the possibility of on/off mechanical 

transients. Probe displacement signals from the LVDT were digitized at 5 kHz 

(ADInstruments – 16 bit A/D). 
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Figure 4: Vibrotactile Mechanical Stimulus Delivery System Setup and Subject 
Orientation. 
Inset image shows close-up view of probe placement on the left lower lip. 
 

Vibrotactile Detection Threshold Testing Procedure. Participants were 

seated in an adjustable chair with a neck pillow to minimize head movement 

during sensory assessment (Figure 4). Each participant was fitted with a bite 

block made from dental impression putty (Kerr Extrude®) to isolate motion of the 

mandible during testing and control for labial aperture size. Participants were 

oriented to the test stimuli (described as resembling the sensation of being lightly 

"tapped" or a “mild buzzing”) and instructed to the details of the psychophysical 

assessment procedure. The rigid surround about the contactor probe was then 

placed on the LL with a 1000 micron (μm) contactor pre-load indentation. 

Following setup, vibrotactile stimulation was delivered to the LL at 5 and 10 Hz 

test frequencies. These test frequencies were selected because they were 
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shown to be sensitive to change in an aging population through pilot testing.226 

Testing order for the two test frequencies was randomized across all participants.  

Participants were told to respond to their perceptual detection of a 

stimulus event by rapidly depressing a handheld trigger switch. As 5 and 10 Hz 

test frequencies are outside the range of normal hearing, no auditory masking 

was needed for these test frequencies during vibrotactile assessment. The signal 

generated by the response switch (TTL – 5 volt square-wave) was digitized in 

synchrony with the vibratory test burst. Signal attenuation was accomplished 

manually with respect to the subject’s perceptual response using a 

programmable logarithmic attenuator (PA4 Programmable Attenuator - Tucker-

Davis, Alachua, FL, USA).  

Preliminary threshold values were established using the method of 

limits.227 For this segment of the sensory assessment procedure, the vibration 

stimuli were delivered at a supramaximal level. Participants were instructed to 

“push the trigger button the moment you can no longer feel the vibration.” The 

researcher decreased the stimuli in 1 dB steps until the participant pushed the 

trigger button and the dB level was recorded. The participant was then asked to 

“push the trigger button the moment you just start to feel the vibration again.” The 

researcher began the stimuli at a low-level intensity and slowly increased the 

stimuli until the subject pressed their trigger button and again recorded the dB 

level. This procedure was repeated two additional times for a total of six trials. 

The resulting dB value from each trial was averaged to provide a starting index 

value for the next step in the detection protocol. The method of limits was used 
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primarily to narrow the response field and make identification of the exact 

threshold level in the next phase easier and quicker to perform.  

Immediately following the method of limits, participants were given 

instructions for the second phase of the psychophysical assessment procedure: 

a 2-alternative forced choice (2-AFC) method. Two-AFC methods are a more 

accurate means of determining exact threshold levels as they are considered 

unbiased and criterion free. Participants heard the researcher say “trial 1,” “trial 

2,” and “respond.” It was explained that they would feel a vibration in one of 

those two trials. Participants were told, “When I say ‘respond’ press the trigger 

button to indicate in which trial the vibration was located. If you are not sure, take 

your best guess.” (See Figure 5 for the visual aids provided to the subjects).  

 

 

 

 

 

 
 
 
Figure 5: Visual Aids to Remind Participants of VDT 2-AFC Testing Procedures 
Visual aids were placed in front of the participants to remind them of the 2-AFC 
procedures. The top panel shows the researcher’s wording during testing to remind them 
to wait until hearing the words “respond. The lower panel reminds participants how to 
respond when they felt the vibration. 
 

Stimulus intensity began at each participant’s averaged dB value 

established earlier by the method of limits. The participant’s response for each 

train of stimuli was recorded using LabChart (ver. 7) and by hand. (See Appendix 

Trial 1  Trial 2  Respond 

Press trigger 1x for Trial 1 
 

Press trigger 2x for Trial 2 



www.manaraa.com

 

 68 

B for stimuli randomization and recording method). For each three correct 

responses, the intensity was decreased. Intensity was increased after each 

incorrect response. All intensity changes were made in 1 dB steps. The threshold 

value was determined as the average value of five threshold crossings/reversals. 

No feedback regarding response accuracy was given during the time of testing. 

Each participants data was collected and digitally stored in LabChart. 

Using LabChart’s DataPad function, each participant’s threshold (average of the 

five crossing described above) and standard deviation during that period were 

calculated and imported into Excel. A Kruskal-Wallis one-way analysis of 

variance was used to determine if there was a difference between groups at 

either the 5 or 10 Hz test frequency (p = 0.1). Post-hoc analyses using Mann 

Whitney tests, corrected for multiple comparisions using a Bonferoni correction 

were completed to identify differences between age sub-groups.  

Vibrotactile Detection Threshold Assessment and Sub-questions. Sub-

questions include:  

• Do labial vibrotactile detection thresholds at the 5 Hz and 10 Hz test 

frequencies increase as a function of age, indicating less sensitivity?  

• Do variables such as speech usage, smoking history, and pure tone 

hearing thresholds change in relation to labial vibrotactile detection 

thresholds?  

The null hypothesis was that no significant difference would exist in vibrotactile 

detection thresholds between the three groups of healthy adults at either test 

frequency. The alternative hypothesis was that there are significant increases in 
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vibrotactile detection thresholds between the three groups at one or both test 

frequencies. We hypothesized that labial vibrotactile detection thresholds will 

increase at the 5 and 10 Hz test frequency with advanced aging. Additionally, we 

hypothesized that those individuals with self-reported increased speech usage, 

no significant smoking history, and better hearing thresholds would have 

decreased vibrotactile detection thresholds. This hypothesis is supported by data 

gathered in a pilot study comparing a cohort of individuals over 65 to a small 

reference group of younger participants. In this study, we identified significant 

differences at the 5 and 10 Hz test frequencies using a modified von Bekesy 

approach.226 No significant differences were identified between age groups for a 

50 or 150 Hz test frequency. To better focus this current protocol, only the 

previously identified significant test frequencies of 5 and 10 Hz were chosen for 

inclusion.  

Low-level Skilled Force Assessments Procedures and Analysis 

Low-level force control assessments were conducted in three ways using: 

1) visually-guided dynamic force trackng, 2) targeted static force control, and 3) 

slow vs. fast ramp-and-hold assessments. Each of the three force conditions are 

explained in greater detail below. 

Visually-Guided Dynamic Force Tracking. Participants were seated in a 

comfortable chair. A custom-built stainless steel cantilever instrumented with 

strain gages and conditioned by a bridge amplifier (LP, -3 dB @ 20 Hz) was 

placed in their mouth so that it rested comfortably at the angles of oral opening. 

(See Figure 6).  
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Figure 6: Setup for Dynamic Force Condition 
Participant set up during the visually-guided dynamic force task. Participants were 
seated with the force cantilever positioned between the oral angles. Participants were 
instructed to trace the sinewave pattern shown on the computer screen using the visual 
feedback provided by the transducer during a lip rounding gesture. The inset shows a 
close-up view of the force-transducer orientation to participant’s lips. 
 

Participants were told to track the cursor, a 2 Hz sinusoidally moving 

pattern with a 2 N peak-to-peak amplitude (previously described by Andreatta & 

colleagues97,228) as “accurately and consistently as possible.” Participants were 

given speech-like phonemes (saying “oo-ee, oo-ee, oo-ee” like the word “movie 

or gooey”) to help organize their labial movemens and increase the intentionality 

of the task. All participants were provided with a 5-minute practice period to gain 

familiarity with the dynamic tracking task. Immediately following the practice 

period, participants were given two minutes to rest and then were asked to begin 
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tracking the visual cursor. Three 10-second trials were recorded of the participant 

continuously performing the dynamic tracking task for offline analysis.  

The dynamic tracking signal and the analog strain gage response were 

recorded in LabChart. Using LabChart’s Data Pad function, each of the three 10-

second trials were analyzed using a root mean square algorithm. Since recording 

was perfomed during continuous participant motion, there were no start and stop 

periods in the digitized record, therefore the entire 10 second period was 

analyzed. The root mean square for each trial was calculated in Excel to show 

the participant’s average accuracy in tracking the sinsoidal pattern their overall 

standard deviation, and their absolute difference from the tracking signal. Non-

parametric Kruskal Wallis tests were completed to compare dynamic force values 

with group data of age, smoking history, pure tone hearing average, and speech 

use.  

Static and Ramp-and-Hold Tasks. To complete the second low-level force 

control tasks, participants were moved to a different computer workstation. 

Participants were fitted with a load-sensitive cantilever to sample midline 

compression forces of the lower lip. The analog force signal was conditioned by a 

bridge amplifier and low-pass filtered (LP, -3 dB @ 50 Hz). The signal was then 

digitized online using the FORCEWIN RT system (Neuro Logic, Lawrence, KS). 

An 8-bit digital-to-analog converter on the microprocessor was programmed to 

generate calibrated feedback signals that were displayed both on an oscilloscope 

and a computer monitor (see Figure 7).  
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Figure 7: Setup for Static & Ramp-and-Hold Conditions 
Participant setup for static and ramp-and-hold conditions during force assessments. 
Inset shows a close-up of the force cantilever placement in and outside of participant’s 
mouth. 
 

Target force endpoints of 0.25, 0.50, 1.00, and 2.00 Newtons for the static and 

two ramp-and-hold conditions were randomized and arranged into three 

complete, yet separate protocols. One of the three protocols was randomly 

assigned to each participant. Each of the three protocols began with a calibration 

and baseline measure. All protocols began with three trials of each of the four 

force endpoints in the static condition. Under the static condition, participants 

were asked to match the red target line they saw on the monitor as “rapidly and 
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accurately as possible”. (See Figure 8 for a screenshot sample of the static force 

condition). 

 

 
 
Figure 8: Screenshot of Participant Response during the Static Force Condition 
Sample of participant response during static force condition. The red line is the 
computer-generated target force endpoint. The black line is a participant’s response 
when told to “match the red line as rapidly and as accurately as possible”. 
 

After the static force condition was completed, participants were given another 

baseline to relax and for the principle investigator to remind them of the ramp-

and-hold directions. During the ramp-and-hold conditions, participants were 

reminded to again match the line observed on the monitor as “accurately as 

possible”. Ramp periods were set using each of the four force endpoints over a 

fast 1 second ramp duration and a slower 2 second ramp duration. See Figures 9 

and 10 for the fast and slow ramp conditions, resepectively.  
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Figure 9: Screenshot of Participant Response in the Fast Ramp Condition 
Sample of participant response during the fast ramp (0.50 N/s) force condition. The red 
line is the computer-generated force target endpoint. The black line is a participant’s 
response when told to “match the red line as rapidly and as accurately as possible”.
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Figure 10: Screenshot of Participant Response in the Slow Ramp Condition 
Sample of participant response during the slow ramp (0.25 N/s) force condition. The red 
line is the computer-generated force target endpoint. The black line is a participant’s 
response when told to “match the red line as rapidly and as accurately as possible”. 
 

Prior to testing, all participants completed the an abbreviated practice 

protocol to introduce them to the procedures and familiarize them with the force 

assessment device. (See Appendix C for a complete list of the practice and three 

assessment protocols, including the number of participants assigned to each 

protocol. Appendix D contains a sample of the entire force assessment protocol).  

After signal acquisition, the automated FORCEWIN RT platform 

immediately quantifies various force measures from the digitzed records for each 

of the subjects. Measures taken from each participant and task condition 

included: reaction time, rise time, peak force, and mean hold force and standard 

deviation during two hold phases (T1, T2). Reaction time was defined as the time 

interval from the time the trial started until the participant’s force had reached 
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10% of the peak force. Peak force was identified as maximum amplitude of force 

during the force ramp phase. Rise time is the 10-90% intercept during dynamic 

force recruitment. The mean and standard deviation of the force output during T1 

and T2 were taken from two consecutive 1.5 second periods during the hold 

phase (see Figure 3 referenced above). Analysis was completed using non-

parametric Kruskal-Wallis tests comparing age, sex, smoking status, and speech 

use, versus each of the static and ramp-and-hold measures listed above.  

Correlations between VDTs and Force Procedures and Analysis 

Using the VDT and force assessment methods described above, the 

correlational relationship between labial vibrotactile detection thresholds and low-

level skilled force assessments were analyzed after all testing procedures were 

finished. Non-parametric Spearman’s correlations were completed to identify the 

relationship between the 5 and 10 Hz vibrotactile detection thresholds and the 

numerous force measures identified above. 

Low-level Force Assessments and Sub-questions. Sub-questions include:  

• Does accuracy in achieving a set force endpoint during a visually-guided 

dynamic task decrease as a function of aging? 

• How do the variables of reaction time, rise time, peak force, and mean 

hold force for phase 1 and 2, change as a function of aging during the 

performance of a static, slow ramp and fast ramp-and hold force 

recruitment condition?  
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• How do variables such as speech usage, smoking history, and pure tone 

hearing thresholds influence findings in the dynamic, static, and ramp-and-

hold forcing conditions?  

The null hypothesis for these questions was that there would be no significant 

difference in accuracy to achieve a set force endpoint during a skilled force 

control task between the three groups. The alternative hypothesis was that there 

would be a significant decrease in ability and consistency to achieve a set force 

endpoint during a skilled low-level force control task between the three groups. 

Although there are no perceptual differences in the speech of older adults from 

younger adults, we hypothesized a decrease in accuracy of achieving a set force 

endpoint during the dynamic force task. For the static and ramp-and-hold 

variables, we hypothesized the aging participants would demonstrate increased 

reaction and rise time, decreased peak force, and greater instability during the 

mean hold force phases. These hypotheses are support by previous findings in 

the limb literature with regard to changes in fine motor control of aging 

adults.219,229 
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Appendix A 
 

The Levels of Speech Usage Categorical Rating Scale230 
 
_____ Undemanding: 

Quiet for long periods of time almost every day. 
Almost never 
• talk for long periods 
• raise your voice above a conversational level, 
• participate in group discussions, give a speech or other presentation 

 
_____ Intermittent: 

Quiet for long periods of time on many days.  
Most talking is typical conversational speech. 
Occasionally: 
• talk for longer periods 
• raise voice above conversational level 
• participate in group discussions, give a speech or other presentation 

 
_____ Routine: 

Frequent periods of talking on most days.  
Most talking is typical conversational speech 
Occasionally: 
• talk for longer periods 
• raise voice above conversational level 
• participate in group discussions, give a speech or other presentation 

 
_____ Extensive: 

Speech usage consistently goes beyond everyday conversational speech. 
Regularly: 
• talk for long periods 
• talk in a loud voice 
• participate in group discussions, give presentations or performances 
Although the demands of your speech are often high, you are able to 
continue with most work or social activities even if your speech is not 
perfect. 

 
_____ Extraordinary: 

Very high speech demands 
Regularly: 
• talk for long periods of time 
• talk with loud or expressive speech or 
• give presentations or performances. 
The success of your work or personal goals depends almost entirely on 
the quality of your speech and voice. 
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Appendix B 
 

Abbreviated Protocol for VDT Collection 
 

Step 1: Method of Limits (5Hz) 
 

Trial type Starting dB dB threshold indicated 
Ascending 0  

Descending 3  
Ascending 2  

Descending 40  
Ascending 1  

Descending 38  
 

Indicated Operating Range for this Subject: 
 

__________________________________________ 
 

Step 2: 2-AFC Threshold 
5Hz 

Trial dB Train 1 Train 2 Correct? Threshold Crossing # 
1  X    
2  X    
3  X    
4   X   
5   X   
6  X    
7   X   
8   X   
9  X    
10  X    
11   X   
12   X   
13  X    
14   X   
15   X   
16  X    
17  X    
18   X   
19   X   
20   X   
21   X   
22  X    
23   X   
24   X   
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Appendix C  
 

Participant and Protocol Number 
 

Young 
Group 

Protocol 
# 

Middle 
Group 

Protocol # Older 
Group 

Protocol 
# 

YA001 1 MA001 1 OA001 1 
YA002 2 MA002 2 OA002 2 
YA003 1 MA003 2 OA003 2 
YA004 1 MA004 2 OA004 2 
YA005 1 MA005 1 OA005 1 
YA006 1 MA006 1 OA006 1 
YA007 1 MA007 2 OA007 1 
YA008 1 MA008 1 OA008 1 
YA009 2 MA009 1 OA009 2 
YA010 2 MA010 1 OA010 1 
YA011 1 MA011 2 OA011 1 
YA012 2 MA012 1 OA012 2 
YA013 1 MA013 3 OA013 1 
YA014 1 MA014 3 OA014 1 
YA015 2 MA015 3 OA015 1 
YA016 1 MA016 3 OA016 1 
YA017 2 MA017 3 OA017 1 
YA018 1 MA018 3 OA018 2 
YA019 1 MA019 3 OA019 2 
YA020 2 MA020 3 OA020 3 
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Appendix D  

Sample protocol 

Test Protocol #3 
Force Endpoint # of Tokens Condition 

Baseline 3  
0.50 3 Static 
1.00 3 Static 
0.25 3 Static 
2.00 3 Static 

Baseline 2  
0.50 3 0.25 N/s ramp 
2.00 3 2.00 N/s ramp 
0.25 3 0.125 N/s ramp 
1.00 3 1.00 N/s ramp 

Baseline 2  
0.25 3 0.25 N/s ramp 
1.00 3 0.50 N/s ramp 
2.00 3 1.00 N/s ramp 
0.50 3 0.50 N/s ramp 
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Chapter Four 
 

Results 
 

Sixty participants were included in this study (20 male and 40 female). 

Fifteen participants (25%) reported they were former smokers, 39 participants 

(65%) reported they had never been a smoker and 6 participants (10%) reported 

they were currently smoking on a daily basis, either cigarettes, cigars or a 

combination of both. Additionally, participants identified their amount of daily 

speech use on a 5-point scale. There were no participants that reported a 1 (or 

Undemanding speech needs) on the scale. Participants reported an amount of 

speech use using the remaining four levels: 2 (Intermittent) – 12 participants 

(20%), 3 (Routine) - 32 participants (53.3%), 4 (Extensive) – 8 participants 

(13.3%), 5 (Extraordinary) – 8 participants (13.3%).  

Group Demographic Results 

All data were analyzed using non-parametric tests, therefore raw data will 

be reported using medians and ranges rather than means and standard 

deviations. An average pure tone threshold level was determined using 

frequencies of 500, 1000, 2000 and 4000 Hz presented to the right and left ear. 

Participants with hearing aides were tested in both aided and unaided conditions. 

If applicible, the aided hearing thresholds were used for the participant’s average. 

A non-parametric Kruskal Wallis test identified a stasticially significant difference 

between the three groups for pure tone averages (p of <0.0001). Post-hoc testing 

using a Mann Whitney test identified a stastically significant difference between 

the young and older group at p=<0.001 and between the middle and older group 
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at p=0.0010  indicating significantly increased pure tone hearing thresholds, or 

decreased hearing acuity in older adults (see Figure 11). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Pure Tone Hearing Averages by Age Group 
Boxplot showing pure tone hearing threshold medians and ranges for the young, middle 
and older group. Higher thresholds indicate less sensitivity. Overall Kruskal Wallis and 
individual Mann Whitney p-values are listed. 
 

Participants who self-identified as “current smokers” demonstrated 

significantly increased hearing thresholds, or worse hearing (Figure 12). A 

significant group differences was identified by smoking category: current, former, 

and non-smokers (p=0.0016). Post-hoc tests identified significant differences 

between the groups indicating a progression of worsening hearing based on 

smoking status. Participants that have never smoked were significantly different 

from current smokers (p=0.0111) and participants that were former smokers had 

significantly better hearing thresholds than current smokers (p=0.0035).  
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Figure 12: Pure Tone Hearing Averages by Smoking Status  
Boxplot showing pure tone hearing threshold medians and ranges by current smoking 
status. Higher thresholds indicate less sensitivity. Overall Kruskal Wallis and individual 
Mann Whitney p-values are listed. 
 

There was a significant difference between speech usage categories and 

pure tone hearing thresholds at p=0.0526 (Figure 13). Individuals with better 

hearing acuity (decreased pure tone average thersholds) reported increased 

speech use on a daily basis. There were no significant differences between 

sexes for pure tone average. 
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Figure 13: Pure Tone Hearing Averages by Speech Use 
Boxplot showing pure tone hearing threshold medians and ranges by speech use. 
Higher thresholds indicate less sensitivity; higher number in speech use indicates 
increased speech usage. Overall Kruskal Wallis and individual Mann Whitney p-values 
are listed. 
 

Results for Primary Question 

Correlational Relationship between VDTs and Force. Nonparametric 

Spearman’s rank correlations were completed to compare the statistical 

dependence between multiple variables including age, pure tone hearing 

threshold, vibrotactile detection threshold, and various force measures during the 

dynamic, static, fast ramp, and slow ramp conditions. For the Spearman’s rank 

correlation, age was treated as a continuous variable. In agreement with our 

power analysis, an apriori p-value of 0.1 was set to identify significant findings. 

Age was found to be significantly positively correlated with pure tone 

average hearing thresholds (r=0.605; p <0.0001) in that as age increased, 
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hearing thresholds increased, indicating decreased hearing acuity. The 5 Hz test 

frequency for vibrotactile detection thresholds was also found to be positively 

correlated with age (r=0.302; p<0.019) or as age increased vibrotactile detection 

thresholds increased, indicating decreased labial sensation. Pure tone hearing 

average was also positively correlated with the 5 Hz test frequency (r=0.301;and 

a p=0.020) demonstrating that as hearing acuity decreased, so did labial 

sensation for the 5 Hz test probe. The 10 Hz test frequency threshold was not 

significantly correlated with age or hearing average, but was correlated with the 5 

Hz test frequency (r=0.631; p<0.0001). 

Dynamic force values showed a significant positiive correlation with pure 

tone hearing measures (r=0.235; p=0.071). A second way of analyzing the force 

data was to determine the absolute difference from the stimulus signal, labeled in 

the table as “absolute DF from normal”. When the difference from the dynamic 

force tracking signal was compared, a significant positive correlation with the 5 

Hz test frequency was also identified (r=0.253 p=0.050) demonstrating that as 

vibrotactile detection thresholds at the 5 Hz test probe increased (decreased 

sensation), the participant’s overal distance from the reference signal also 

increased. See Table 3 for all correlation coeffecients and p-values. 
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Table 3: Spearman’s Correlation Coefficients and P-values for Dynamic Force 
Condition 
Spearman’s correlation coefficiens and p-values for age, pure tone hearing thresholds,  
5 and 10 Hz vibrotactile detection thresholds and standard deviations, and dynamic 
force data.  
 

 
 

VDT Correlations with Static Force Condition. Age was found to be 

correlated with mean force hold during time phase 1 (r= -0.260; p= 0.045) and 

rise time (r=0.376; p=0.003). The mean force during the hold phase for time 1 

was not only correlated with age, but also with pure tone hearing thresholds (r= -

0.317; p= 0.014), and the 5 Hz test frequency (r=-0.284; p=0.028) and 5 Hz 

standard deviation (r=-0.29763; p=0.0209). Mean force hold during time phase 1 

was significantly correlated with the 10 Hz test frequency (p=0.074) and standard 

deviation (p=0.0552). The mean force hold for time phase 2 was also found to be 

signifiantly correlated with both the 5 and 10 Hz labial vibrotactile detection 

thresholds (p-values of 0.016 and 0.036 respectively) and standard deviations (p-

values of 0.0104 and 0.0187 respectively). Mean force during the hold phase of 

time 1 and time 2 were significantly correlated with each other (p<0.001). See 

Table 4 for a complete list of Spearman’s correlation coeffecients and p-values 
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for the static force condition. Note that age, pure tone hearing thresholds, and 

vibrotactile detection thresholds for the 5 and 10 Hz test frequency measures will 

remain consistent for each force data set. Significant correlations at p<0.05 are 

highlighted in red, with significant correlations of p=0.1 highlighted in blue. 

Overall this data indicates that as a participant’s threshold for the 5 Hz test 

frequency increases (decreased sensation), ability to maintain mean hold force 

during phase 1 and will decrease. 

Table 4: Spearman’s Correlation Coefficients and P-values for Static Condition 
Spearman’s correlation coefficiens and p-values for age, pure tone hearing thresholds,  
5 and 10 Hz vibrotactile detection thresholds and standard deviations, and static 
condition.  
 

 

VDT Correlations with Fast Ramp-and-hold (0.5N/s) Condition. During the 

fast ramp-and-hold condition (0.5 N/s), age was significantly correlated with 

reaction time (r= -0.271; p=0.036). Several of the fast ramp-and-hold measures 

were significantly correlated with each other, however none was significantly 

correlated with other sensation variables. See Table 5 for a complete list of 
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Spearman’s correlation coeffecients and p-values for the ramp-and-hold over 1 

second condition. 

Table 5: Spearman’s Correlation Coefficients and P-values for Fast Ramp (0.5N/s) 
Condition  
 Spearman’s correlation coefficiens and p-values for age, pure tone hearing thresholds, 
5 and 10 Hz vibrotactile detection thresholds and standard deviations, and fast ramping 
(0.5 N/s) data.  
 

 

VDT Correlations with Slow Ramp-and-hold (0.25N/s) Condition. In the 2 

second ramp-and-hold condition, age was correlated with the standard deviations 

of the hold period for both the phase 1 and phase 2 timepoints, p=0.020, and 

0.019 respectively. The 5 Hz test frequency was significantly correlated with 

multiple force variables including: mean force for hold phase 1 (p=0.029), 

standard deviation for hold phase 1 (p=0.038), mean force for hold phase 2 

(p=0.040), and standrd deviation for hold phase 2 (p=0.047). The 10 Hz test 

frequency was also significantly correlated with various force measures, including 

the standard deviations for mean force during the hold phase of time 1 (p=0.001) 
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and time 2 (p=0.001). This data indicates that as the 5 and 10 Hz test 

frequencies increased (less sensitivity), ability to maintain the mean hold force 

during times 1 and 2 also decreased. See table 6 for a complete list of 

Spearman’s correlation coeffecients and p-values for the ramp-and-hold over 2 

second condition. 

Table 6: Spearman’s Correlation Coefficients and P-values for Slow Ramp 
(0.25N/s) Condition Spearman’s correlation coefficiens and p-values for age, pure tone 
hearing thresholds, 5 and 10 Hz vibrotactile detection thresholds and standard 
deviations, and slow ramping (0.25 N/s) data. 

 
 
Results for Sub-questions 

Labial Vibrotactile Detection Thresholds. Non-parametric Kruskal Wallis 

tests with an alpha of 0.1 were used to compare the three age groups at the 5 

and 10 Hz test frequency. Age was used as a discrete group variable in these 

analyses with three age groups: Young- 19-39 years; Middle- 40-64 years; Older- 

65 years and older. There was a significant difference between age groups at the 
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5 Hz test frequency with a p-value of 0.0646 indicating increased vibrotactile 

detection thresholds in our individuals. Figure 14 illustrates the increased median 

threshold value for the older group versus the young and middle group. There 

were no significant differences between vibrotactile detection thresholds at 5 or 

10 Hz for sex, speech usage or smoking history. 

 
Figure 14: 5 Hz Vibrotactile Detection Threshold by Age  
Boxplot showing medians and ranges of the 5 Hz test frequency thresholds for the 
young, middle, and older participants. 
 

Low-level Skilled Force Assessments. Although testing protocols collected 

force endpoints from 0.25-2.0 N, only the 0.5 N endpoint will be presented at this 

time. Non-parametric Kruskal Wallis tests with an alpha set at 0.1 were used to 

compare the group variables of age, sex, speech usage, and smoking history for 

accuracy measures for dynamic force and reaction time, rise time, peak force, 
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and mean hold force for time 1 and 2 for the static, fast ramp (0.5N/s) and the 

slow ramp (0.25N/s) force test conditions. 

Dynamic Force. There were no significant differences in the average 

dynamic force measures when compared to age (p=0.3202, figure 15), sex 

(p=0.9313), speech use (p=0.7505), or smoking history (p=0.8882). However, 

when the overall difference from the dynamic force signal was compared, 

significant effects were identified. A significant difference was identified between 

sexes with a p-value of 0.0447. There was a significant difference between age 

groups (p=0.0786); with the participants in the Middle age group demonstrating 

significantly decreased overall difference from the signal than the Young or Older 

participants. There was no signficant difference identified for either speech use 

(p=0.6284) or smoking history (p=0.9049). See Table 7 for p-values for each 

measure by group for the dynamic force condition. For all tables in this section, 

significant correlations at p<0.05 are highlighted in red, with significant 

correlations of p<0.1 highlighted in blue. 
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Figure 15: Dynamic Force Accuracy by Age  
Accuracy in matching a 2 Hz dynamic force task by group: young, middle, and older. No 
significant differences were identified by group. 
 
Table 7: P-values for Group Variables for the Dynamic Tracking Condition.  
Dynamic force tracking accuracy and absolute difference from reference signal by 
demographic variables. Significant differences between groups were identified using 
p<0.05 are highlighted in red; significant differences of p<0.1 are highlighted in blue. 
 

Dynamic 
Force 

Average RMS Difference from 
Reference Signal 

Age 0.3202 0.0786 
Sex 0.9313 0.0447 
Speech 0.7505 0.6432 
Smoking 0.8882 0.7355 
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 Static Force Condition. Significant differences in the static force condition 

by age were identified for the mean force hold phase of time 1 (p=0.0467) and 

rise time (p=0.0039). See Figures 16-19 for boxplots of rise time, peak force, and 

mean force hold for time phase 1 and 2 for the static condition.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16: Rise Time Static Condition by Age 
Boxplot showing medians and ranges of rise time during the static condition for the 
young, middle, and older participants.
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Figure 17: Peak Force Static Condition by Age 
Boxplot showing medians and ranges of peak force during the static condition for the 
young, middle, and older participants.
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Figure 18: Mean Force for Time Phase 1 Static Condition by Age 
Boxplot showing medians and ranges of mean force during time phase 1 during the 
static condition for the young, middle, and older participants. 
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Figure 19: Mean Force for Time Phase 2 Static Condition by Age 
Boxplot showing medians and ranges of mean force during hold phase 2 during the 
static condition for the young, middle, and older participants. 
 
 

The group variable of smoking history identified significant differences in 

the mean force hold phase for time 1 (p=0.0297, Figure 20), as well as reaction 

time (p=0.0386, Figure 21). This data indicates that current smokers had 

significantly decreased ability to maintain the correct force endpoint during a hold 

phase and had significantly increased reaction times. 
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Figure 20: Static Condition Mean Force Hold Time Phase 1 by Smoking Status 
Boxplot showing medians and ranges of Mean force during hold phase 1 during the 
static condition for current, former, and non-smokers. 
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Figure 21: Static Condition Reaction Time by Smoking Status 
Boxplot showing medians and ranges of reaction time during the static condition for 
current, former, and non-smokers. 
 

Two variables demonstrated significant differences by speech usage 

category: mean force hold for time phase 2 (p=0.0658, Figure 22) and reaction 

time (0.0726, Figure 23). Individuals with increased speech usage (categories 4 

and 5) were significantly different than the less takative individuals (categories 2 

and 3) for maintaining mean force during hold phase 2. No sex differences were 

identified for any of the measurements in the static condition. See table 8 for p-

values for each measure by group for the static condtion.  
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Figure 22: Static Condition Mean Force Hold for Time Phase 2 by Speech Use  
Boxplot showing medians and ranges of mean force during time phase 2 during the 
static condition by speech use. Higher numbers in “speech use” indicate an increaes in 
self-reported daily talking. 
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Figure 23: Static Condition Reaction Time by Speech Use  
Boxplot showing medians and ranges of reaction time during the static condition by 
speech use. Higher numbers in “speech use” indicate an increaes in self-reported daily 
talking. 
 
Table 8: P-values for Group Variables for the Static Force Condition.  
Associations between static force variables by demographic variables. Significant 
associations at p<0.05 are highlighted in red; significant correlations of p<0.1 are 
highlighted in blue. 
 

  
Static 
Force 

Mean 
Phase T1 

SD - 
Phase 
T1 

Mean 
Phase 
T2 

SD -
Phase 
T2 

Peak 
Force 

Reaction 
Time 

Rise 
Time 

Age 0.0467 0.4629 0.1182 0.6193 0.8177 0.3499 0.0039 
Sex 0.204 0.3884 0.3799 0.3884 0.3468 0.6324 0.5408 
Speech 0.1088 0.7737 0.0658 0.7747 0.1268 0.0726 0.2215 
Smoking 0.0297 0.7632 0.1134 0.7767 0.4395 0.0386 0.6428 
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Fast Ramp-and-Hold (0.5N/s) Condition. See Figures 24-27 for boxplots of 

rise time, peak force, and mean force hold for time phase 1 and 2 for the fast 

ramp-and-hold (0.5 N/s) condition. Two stasticially significant variables were 

idenitied for the fast ramp of 0.5N/s test condition for grouped data. Mean force 

hold during phase 2 was significant by age at p=0.0467. Peak force by sex was 

significant at p=0.0132. There were no stastically significant differences for any 

other fast ramp force conditions for speech usage or smoking history. See Table 

9 for p-values for each measure by group for the fast ramp condition.  

 
Figure 24: Rise Time for Fast Ramp-and-Hold (0.5 N/s) by Age 
Boxplot showing medians and ranges of rise time during the fast ramp-and-hold 
condition for the young, middle, and older participants. 
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Figure 25: Peak Force for Fast Ramp-and-Hold (0.5 N/s) by Age 
Boxplot showing medians and ranges of peak force during the fast ramp-and-hold 
condition for the young, middle, and older participants. 
  



www.manaraa.com

 

 104 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26: Mean Force for Time Phase 1 for Fast Ramp-and-Hold (0.5 N/s) by Age 
Boxplot showing medians and ranges of mean force for hold phase 1 during the fast 
ramp-and-hold condition for the young, middle, and older participants. 
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Figure 27: Mean Force for Time Phase 2 for Fast Ramp-and-Hold (0.5 N/s) by Age 
Boxplot showing medians and ranges of mean force for hold phase 2 during the fast 
ramp-and-hold condition for the young, middle, and older participants. 
 
Table 9: P-values for group variables for the fast (0.5N/s) ramp force condition. 
Significant associations at p<0.05 are highlighted in red; significant associations of p<0.1 
are highlighted in blue. 

 

 

Slow Ramp-and-Hold (0.25N/s) Condition. See figures 28-31 for boxplots 

of rise time, peak force, and mean force hold for time phase 1 and 2 for the the 

slow ramp-and-hold (0.25 N/s) condition. A significant difference was identified at 

the mean force for time 1 (p = 0.0812) and the standard deviations for time phase 

Fast 
Ramp 
Force 

Mean 
Phase 
T1 

SD - 
Phase T1 

Mean 
Phase T2 

SD - 
Phase 
T2 

Peak 
Force 

Reaction 
Time 

Rise 
Time 

Age 0.4789 0.3396 0.0467 0.3176 0.8349 0.1803 0.6516 
Sex 0.3549 0.4902 0.8385 0.6892 0.0132 0.3631 0.2792 
Speech 0.4967 0.7300 0.9837 0.7548 0.5078 0.6041 0.3751 
Smoking 0.9498 0.3014 0.4784 0.2407 0.4312 0.1477 0.5871 



www.manaraa.com

 

 106 

1 and 2, at p = 0.0957 (figure 32) and 0.0586 (figure 33), respectively. Sex 

differences were nearing significance for the rise time at p = 0.0777. No 

significant group differences for speech use or smoking history were identified for 

measures in the slow ramp 0.25N/s condition. See table 10 for p-values for each 

measure by group for the slow ramp condition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28: Rise Time for Slow Ramp-and-Hold (0.25 N/s) by Age 
Boxplot showing medians and ranges of rise time during the slow ramp-and-hold 
condition for the young, middle, and older participants. 
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Figure 29: Peak Force for Slow Ramp-and-Hold (0.25 N/s) by Age 
Boxplot showing medians and ranges of peak force during the slow ramp-and-hold 
condition for the young, middle, and older participants. 
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Figure 30: Mean Force for Time Phase 1 for Slow Ramp-and-Hold (0.25 N/s) by Age 
Boxplot showing medians and ranges of mean force for hold phase 1 during the slow 
ramp-and-hold condition for the young, middle, and older participants. 
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Figure 31: Mean Force for Time Phase 2 for Slow Ramp-and-Hold (0.25 N/s) by Age 
Boxplot showing medians and ranges of mean force for hold phase 1 during the slow 
ramp-and-hold condition for the young, middle, and older participants. 
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Figure 32: Slow Ramp-and-Hold (0.25 N/s) Standard Deviation for Mean Force Hold 
Time Phase 1 by Age 
Boxplot showing medians and ranges of the standard deviations for mean force for hold 
phase 1 during the slow ramp-and-hold condition for the young, middle, and older 
participants. 
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Figure 33: Slow Ramp-and-Hold (0.25 N/s) Standard Deviation for Mean Force Hold 
Time Phase 2 by Age 
Boxplot showing medians and ranges of the standard deviations for mean force for hold 
phase 2 during the slow ramp-and-hold condition for the young, middle, and older 
participants. 
 
Table 10: P-values for Group Variables for the Slow (0.25N/S) Ramp Force 
Condition. Significant associationss at p<0.05 are highlighted in red; significant 
associations of p<0.1 are highlighted in blue. 
 

Slow 
Ramp 
Force 

Mean 
Phase 

T1 

SD -
Phase 

T1 

Mean 
Phase 

T2 

SD - 
Phase 

T2 

Peak 
Force 

Reaction 
Time 

Rise 
Time 

Age 0.0812 0.0957 0.1237 0.0586 0.6169 0.4761 0.9341 
Sex 0.9250 0.1582 0.7301 0.2656 0.2934 0.2333 0.0777 
Speech 0.3100 0.7305 0.3798 0.7198 0.8663 0.1064 0.8592 
Smoking 0.2487 0.4031 0.7060 0.5688 0.2823 0.7499 0.3441 
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Chapter Five 
 

Discussion 

 The central aim of this dissertation study was to begin to identify the 

relationship between labial sensation and low-level speech-like force production 

(as theorized by the DIVA model) and to characterize how this relationship may 

change as a function of increasing age. The purpose of this observational study 

was to begin setting the foundation for using this relationship to guide future 

assessment and treatment of speech dysarthria after non-progressive neurologic 

injury based on objective measures of sensation and force production. 

Correlation analyses have identified a significant relationship between the 

vibrotactile detection threshold at the 5 Hz test frequency and accuracy in 

maintaining the mean force hold for phases 1 and 2 in the static and slow ramp 

(0.25 N/s) force control condition in community-dwelling adults. Our findings align 

with our initial hypothesis that there is a negative correlational relationship 

between labial somatosensation and low-level force production ability with 

vibrotactile detection thresholds increasing with age and accuracy in achieving a 

low-level force endpoint decreasing with age.  

Alterations in Orofacial Sensory Capacities 

Unfortunately, little is currently known about the functional effect of 

decreased somatosensory capabilities and the impact this reduction may have 

on behaviorally-related processes underlying the performance of common 

orofacial activities in the aging population. Some clues may be obtained from 

studies such as those that have demonstrated that alterations in sensation (using 
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vibrotactile detection sensitivity) in human foot sole may be a contributing factor 

to changes in postural and gait patterns.154,231 The age-related perceptual 

changes observed in our current study may have a similar effect as it pertains to 

behaviors such as speech production. As sensory experiences in the orofacial 

region are primarily the result of self-generated action, ongoing learning and 

updating of central orofacial sensorimotor representations are influenced by self-

generated sensory experiences.105 In studies by Ito and Ostry, these researchers 

identified the reciprocal relationship between speech production and 

perception.40,73 The researchers applied a stretch perturbation to facial areas 

while participants listened to speech sounds. Participants identified perceptually 

hearing a different speech sound based on the direction of skin stretch to the 

orofacial area, however no changes were identified when skin stretch 

perturbations were applied to the palm or forearm.73 These studies support the 

application of the DIVA model in that auditory, somatosensory and motor 

associations learned during speech development and previous experience 

combine to aide in speech perception and action in older adults.  

Our findings indicating that older adults have decreased labial sensitivity is 

consistent with increased somatosensory thresholds identified throughout the 

body in aging populations.150,155,232 The results of this investigation are consistent 

with previously published data by our lab group highlighting labial vibrotactile 

detection threshold changes in community-dwelling older adults.226 In our 

previous study, significant differences were noted for the 5 and 10 Hz test 

frequencies, whereas in our current study significant differences were observed 
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at the 5 Hz test frequency. This discrepancy may be partly explained by changes 

in our methodologies as the previous study employed a modified von Bekesy 

(staircase) method to identify thresholds, versus our current 2-alternative forced 

choice method. Additionally, the previous study used a small cohort of young 

individuals (average age of 22 years) as a comparison group to the older adults.  

 In healthy aging, increased perceptual thresholds may be attributed to 

physiological changes in oral and perioral skin, mucosa and muscle 

structure.159,162,233,234 For example, the orbicularis oris muscle thins 233 while 

mechanosensitivity thresholds in the oral mucosa increase in healthy aging.161 

Healthy skin, regardless of sun exposure, demonstrates a progressive alteration 

in thickness and elasticity.159,234,235 Aging skin is characterized by a flattening of 

the underside of the epidermis, a spreading out of the superficial blood vessels, 

thickening terminal elastic fibers, and decreased hydration at the skin surface. 

These changes result in the characteristic dry and sagging appearance of older 

skin.159,234 Any of these physiologic changes in aging muscle, mucosa or skin 

could be contributing to the results of this study.  

Alterations in Orofacial Motor Activities 

Previous reports described above have demonstrated that assessments of 

individual parts of the orofacial system may reveal adequate strength or range of 

motion in static positions or during the performance of gross motor movements. 

However, people with speech dysarthria may not be able to accomplish the 

overall speech goal when it comes to intelligible production of speech sounds 

that involves the interplay between these systems. In work by Barlow and 
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Burton,36 four individuals with dysarthria after traumatic brain injury completed 

low-level force assessments using similar methodologies to the current study. 

The results from their study indicated a decreased ability to grade and fractionate 

movement. Participants in our older age group had significantly increased 

reaction times during the static force conditions. The older adults tended to take 

a more hesitant and slow approach to increasing target force. Taking a slower, 

more cautious approach to force adjustments may be an indication of needing 

more time to process sensory feedback to complete the desired task. In our 

current study, the older adults may have used decreased speed as 

compensation for decreased sensory thresholds. Individuals with speech 

dysarthria have also been known to use a slower rate during speech to 

compensate for weakness, fatigue, decreased sensation or the need for 

increased temporal processing.26 It is possible older adults in our study were 

compensating in a similar fashion.  

 

Applications to Theoretical Perspective 

Using pure tone hearing thresholds, labial vibrotactile detection thresholds 

and dynamic, static, and ramp-and-hold low-level force assessments, the results 

of this dissertation study support the application of speech motor control theories, 

like the DIVA model and DST, to clinical populations with speech dysarthria. 

Applications of DIVA model 

In alignment with principles of the DIVA model, there is a proposed 

interdependent relationship between the ability to use auditory and 
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somatosensory feedback to produce functional speech actions. This primary 

tenant of the DIVA model was consistent with our current findings. Changes in 

auditory and somatosensory threshold levels that were correlated with decreased 

low-level force control as identified in our aging population, may have an impact 

on functional movement, although not apparent at the functional speech level at 

this time.232  

Feedback vs. Feedforward Control Systems 

Feedback, or closed loop, systems rely on auditory and somatosensory 

information to learn new skills, maintain skills during internal and external 

perturbations, and potentially re-learn skills after injury. Our findings indicated 

significant differences between age groups for maintaining mean hold force 

during time 1 in the static and slow ramp-and-hold conditions, as well as 

significant correlations between the 5 Hz test frequency and the ability to 

maintain force during mean force during time phase 1 and 2. It is possible that 

participants in our study had to rely more on their somatosensory feedback 

systems to maintain the force endpoint in the slow and more controlled force 

tasks136,228 and therefore had decreased ability to maintain the low-level force 

endpoint as labial sensitivity decreased. 

In a mature speaker, the orofacial system has completed a training 

process that matches the intended speech goal to an acoustic and 

tactile/proprioceptive target. At this time, the healthy, mature speaker can rely on 

feedforward, or open loop systems to maintain correct speech production. In our 

data, differences in ability to reach and/or maintain the 0.50 N endpoint were not 
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found between age groups during the fast ramp-and-hold condition, except for 

mean hold force during time phase 2. It is possible that participants were able to 

rely on their feedforward systems in a more ballistic fashion during the fast ramp-

and-hold condition. It was not until the end of task (mean hold force during time 

phase 2) that participants began to use their feedback systems and older 

participants began to have significant differences due to their decreased labial 

sensitivity. 

Applications of Dynamic Systems Theory 

In DST, complex dynamic performances are described as emerging from 

the interaction of neurobiological networks and environmental affordances.27,52-54 

Multiple degrees of freedom spontaneously arrange themselves to correctly 

produce the desired behavior. It is the complex interplay of multiple vocal tract 

structures that allows healthy speakers to produce highly coordinated co-

articulations during running speech. More simply put, this means that speech 

production is greater than the sum of its parts.  

Interpretation of r2 values is a means of interpreting the amount of 

variance explained by one variable versus another. The r2 values identified 

during our Spearman correlations are low. This is not a negative finding, but 

actually supportive of the application of DST to this study population and speech 

tasks. Low r2 values may indicate that there is not one variable that explains 

speech behavior outcomes well. This finding suggests that future analyses and 

modeling should be completed using multivariate analyses to identify which 

combination or pattern of variables may be most predictive. It is our contention 
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that gradual and progressive alterations in sensory and motor capacity may 

result in a narrowing of reserve capacity (degrees of freedom) to functionally 

adapt to large-scale perturbations such as neurologic injury or disease states.  

 

Clinical Implications and Applications 

Interestingly, in spite of the significant increase in threshold level at the 5 

Hz test frequency and decreased accuracy in maintaining a 0.50 N endpoint, all 

aging participants had perceptually normal speech intelligibility and reported no 

noticeable difficulties swallowing. Although this study is preliminary in nature with 

numerous follow-up studies required, it does begin to provide insight into labial 

sensorimotor interaction underling functional communicative and ingestive 

behaviors in healthy adults that may be extrapolated to the treatment of a 

disordered population.  

Smoking Status  

Significant group differences for smoking status were identified for pure 

tone hearing thresholds, mean hold force during time phase 1 and reaction time 

during the static condition. Current smokers demonstrated decreased hearing 

acuity, decreased ability to maintain hold force during time 1 and increased 

reaction time. Ototoxic effects of tobacco have been well documented;236,237 

however, smoking and/or tobacco use effects on oral tactile sensitivities have 

had mixed findings.161,238 Even though smoking causes vasoconstriction and 

reduced blood flow to skin and extremities,236 there have been some conflicting 

arguments regarding the impact of smoking on tactile sensation in fingertips and 
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feet.239,240 In one study with negative findings, Gerr and Letz discuss their non-

significant findings for difference in vibrotactile acuity in the finger and forearm of 

healthy individuals based on smoking status. They argue that their findings may 

have been confounded by their exclusion of adults with specific co-morbidities 

that may be related to tobacco use. There is a need for further research in this 

area; however, our findings suggest that patients with a significant smoking 

history may have even further difficulties using auditory and/or somatosensory 

feedback during speech therapy interventions.   

Possible Treatments that Increase Sensory Saliency 

 Unfortunately, there is little research in speech dysarthria focusing on the 

use of neuroplasticity principles to improve intelligibility; however work by Ramig 

and colleagues using LSVT/LOUD therapy is beginning to bridge that gap 

through application of the neuroplasticity principles described by Kleim and 

Jones above.218,241-243 During LSVT/LOUD therapy, patients are given one salient 

feature of speech on which to focus; they are instructed to “Think Loud” in an 

attempt to increase volume and clarity by moving articulators more dramatically. 

Although originally designed for individuals with Parkinson’s disease, Wenke and 

colleagues243 demonstrated an increase in intelligibility for individuals with 

dysarthria after traumatic brain injury using the LSVT program. It is possible that 

the improvement in speech intelligibility of individuals with non-progressive 

speech dysarthria after interventions with LSVT are related to the level of 

attention and motivation integrated into the program.241 Additionally, the focus on 

“loud” speech encourages patients to over-articulate and slow their rate which 
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may also provide the necessary time for processing somatosensory and auditory 

feedback information necessary for maintaining correct production, as 

hypothesized in the DIVA model. The LSVT/LOUD program also requires daily 

homework (increased intensity of practice) and the use of functional, patient-

created phrases (increased specificity and saliency). The daily practice, 

motivation of using self-created and important sentences, and the focused 

attention to “think loud” may increase the engagement of participants during 

therapy sessions, possibly leading to improved outcomes.244 Part of the 

LSVT/LOUD therapy program is the focus on moving from blocked to random 

practice within the confines of each session. The use of principles of exercise 

science may add to the overall effectiveness of this program and could be 

adapted for use in future therapy programs for individuals with other types of 

speech dysarthria.  

 

Discussions of Study Methodologies 

Speech vs. Non-speech tasks 

 Studies in the field of speech dysarthria often raise questions regarding 

the different muscle activation patterns and neural structures involved in speech 

versus non-speech tasks. Given our assessment methodologies of using skilled, 

but non-speech tasks, it is important to make the distinction between these types 

of oromotor movements to place our findings in the greater context of the field. 

Imaging studies and cortical recordings of neural networks for motor control have 

shown a functional task-specific organization in primary motor cortices.245,246 In 
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recent work using BOLD fMRI during the production of nonsense vocal tract 

gestures compared to speech sounds, researchers found common neural 

substrates with overlapping activations for speech gestures and skilled non-

speech movements.213 In the current study, participants were asked to complete 

a dynamic non-speech, yet skilled oral task. Participants were asked to focus on 

saying the vowel sounds for words such as “movie” or “gooey” to maintain focus 

on completing the quick lateral stretch to medial compressive labial movements 

underling the force control task. The rationale for using a correlate to a real word 

was to give participants a sense of “intent” when producing the speech-like 

movements. Given that outside of sex differences there were no significant 

results to report for the dynamic speech task may indicate that our task was not 

sufficiently speech-like. It is possible that the dynamic task was too far outside 

the range of expected speech production gestures for participants. Future study 

designs may move from use of a simple sinusoidal tracking pattern to a more real 

word pattern and/or increase the speed of the task to have the behavior fall more 

into the range of velocities and acceleration/deceleration states used in speech.  

Vibration as a Means of Sensory Assessment 

 As discussed in the Methods section, vibration is an excellent signal with 

which to assess labial tactile sensitivity. The rapid movements of the lower face 

during speech produce cutaneous and subcutaneous derived sensory feedback 

encoded by mechanoreceptors in the orofacial region.79,97,220,221 Although, the 

cutaneous mechanoreceptors of the face are sensitive to frequencies from just 

above DC to 150Hz,98 the sensory feedback information provided by self-
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generated speech kinematics spans a bandwidth from DC to ~20 Hz.86,97 

Therefore the use of 5 and 10 Hz test frequencies were well-suited to assess 

vibrotactile detection thresholds as speech-specific somatosensory input ranges. 

Additionally, using vibration as a means of assessment provides researchers with 

a high degree of resolution, manipulation and control, especially when compared 

to other sensory assessment measures, such as 2-point discrimination or von 

Frey probe assessments.76  

Vibrotactile Detection Threshold Testing Location 

The lips are comprised of multiple muscles working together to create a 

functional speech gesture. The use of one site may be an adequate 

representation of the orofacial system. In a previous study by Andreatta and 

Davidow,98 these investigators tested various locations of the upper and lower lip 

vermilion and found no significant differences in sensitivity as a function of 

laterality or between the upper lip and lower lip vermilion. Furthermore, as 

discussed earlier and referenced in Barlow and Burton,36 force measurements in 

the lips are measures of resultant force. In vivo isometric measurements of the 

labial musculature are not feasible. In fact, given the co-dependence of lip 

motion, the composite anatomy of muscles surrounding the oral opening and the 

3-D conformational changes undertaken by the orofacial area during functional 

speech gestures, isometric measurements are generally uninformative and not 

consistent with the biomechanical goals of the region. Therefore the use of one 

site to measure sensation and force are appropriate given the underlying 

anatomy, physiology and research questions.  
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Non-parametric Data Analysis 

Nonparametric testing methods were chosen for this study for multiple 

reasons. First, in pilot testing of vibrotactile detection thresholds in aging adults, 

the test frequency variables did not maintain a normally distributed data range 

and therefore do not meet one of the required assumptions for parametric 

methodologies. Second, as this study was designed as a preliminary exploratory 

study, the use of nonparametric methods offers a more conservative approach, 

particularly given the smaller sample sizes. Of the variables collected, including 

group variables, somatosensation, and force, only five demonstrated normally 

distributed values. These variables were: Rise time in the 1 and 2 second force 

testing conditions and Reaction time in the 1 and 2 second and static force 

testing conditions. Given that only these five variables qualified for parametric 

testing, they were analyzed using non-parametric tests as well, to maintain 

consistency throughout our data analysis; however, parametric results for these 

variables had the same interpretative conclusions.  

 

Internal and External Validity Measures 

 Although a sample size of 20 subjects per group (n=60) may be 

considered small, this study demonstrated adequate power at 80% for an alpha 

of 0.1. With this a priori power analysis and the use of conservative non-

parametric analysis for all data, we can be confident in the significant findings 

identified in this report. This study was intended to be exploratory and a first step 
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towards justifying a larger more comprehensive study to include disordered 

participant groups. In light of our current findings, a larger study is easily justified.  

 Because this study is a pre-experimental, observational study 

(retrospective) predictions cannot be made at this time. Additional threats to 

internal validity exist due to study design. For static group comparisons, threats 

to internal validity for this study include: selection, randomization and blinding. 

Participants in this study consisted of a convenience sample of adults affiliated 

with the University of Kentucky’s College of Health Sciences. Participants were 

community-dwelling adults who self-reported as “healthy” adults. Although 

specific exclusion criteria were followed, because biomarker and cognitive 

assessments were not taken as part of the study protocol, health status was 

subjectively identified by participants. It is possible that some study participants 

could have an undiagnosed mild cognitive impairment (MCI) that would act to 

confound the results. For example, increased reaction time is also associated 

with early MCI. Future studies may consider the use of a cognitive screening tool 

such as the MOCA – Montreal Cognitive Assessment.247,248 Participants were not 

randomized to groups, however their assessment orders were randomized. 

There was no blinding in this study.  

External validity assesses both population validity, ability to generalize 

across people, and ecological validity, ability to generalize across settings. As 

previously described, the majority of participants was a convenience sample and 

may not be representative of the larger population. Continued data collection will 

aim to increase variation in the sample to complete sub-analyses of effects of 
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speech usage, sex, and smoking status. Additionally, findings may not generalize 

across settings as all assessment and data collection was completed by the 

primary investigator in the same lab location. Test and re-test values and inter- 

intra-rater reliability measures should be completed in future studies.  

 

Future directions 

In this study, only the 0.5 N force data from a larger set of force targets 

was analyzed and compared across three conditions. The study protocol in fact 

included the collection of force endpoints of 0.25, 1.00 and 2.00 Newtons. 

Analysis of findings for these endpoints will be completed to identify differences 

in peak force, rise time, and hold phases between our group data. Analysis of all 

endpoints would also determine which force endpoint(s) may be most beneficial 

for future testing to provide researchers with the most efficient means to assess 

the relationship between sensory thresholds and motor movements across age 

groups. Future studies could focus on those select force endpoints identified as 

most beneficial.  

Collecting increased background information regarding participant’s oral 

history would be beneficial. For example, in our study, individuals who were 

currently smoking demonstrated increased vibrotactile detection thresholds and 

increased hearing thresholds for pure tone testing, indicating decreased 

sensitivity in both areas. Future studies will need to assess for other possible 

factors that could alter sensitivity, including brass instrument musicians, vocal 

training, professions with high loads of public speaking, alcohol and drug history, 
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and more information regarding current medications. Although our study protocol 

excluded individuals with recent dental visits, information regarding oral health 

and dental history may provide valuable data. It is possible that any of these 

factors may alter somatosensory levels, providing important information for future 

modeling of the relationship between labial/orofacial sensory and motor 

elements.  

Continued collection using the current protocols can be completed to 

increase sample size, age ranges, and match for sex. In the previous chapter it 

was noted that sex differences were identified during select force data analyses. 

Increased sample size with equal sex distribution across groups to distinguish if 

sex differences are important for future research and/or provide important 

information for clinical application. Additional protocols may be added to assess 

differences during assessment of non-skilled/non-speech, skilled/non-speech, 

and skilled speech-like tasks, as well as assessment of vibrotactile detection 

thresholds during skilled non-speech or speech movement tasks. 

The culmination of the normative data will be used to model the 

bidirectional relationship of perception-action in the orofacial system for healthy 

adults. Future modeling may be completed using multivariate means to capture 

the cooperative relationship among multiple vocal tract subsystems important for 

speech gestures. Additionally, factor analyses can be completed to identify which 

variables would be most important to assess clinically as well as which variables 

we can eliminate from future study protocols.  
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After collection of normative data is complete, study protocols should be 

completed with select motor speech disorders to characterize changes in 

sensory and low-level force control characteristics occurring after neurologic 

events, such as stroke or traumatic brain injury. Data can then be compared to 

normative values to begin descriptions of dysarthria based on sensorimotor 

characteristics. These descriptions of dysarthria can then be compared to the 

early foundational work of Darley, Aronson, and Brown in the Mayo Clinic Model 

to update their characterizations of dysarthria to objective, measurable variables.  

Finally, although not attainable in the near future, the overarching 

objective of this research line is to better understand sensorimotor speech 

disorder for the design of future assessment and treatment protocols. At present 

there are no clinical means available to objectively measure labial sensorimotor 

skills as discretely as this study. Therefore, although this research provides 

important implications for clinical practice, research in this area will eventually 

need to concentrate on the development of sensory assessments that can be 

utilized fully in the clinical setting.  

 

Conclusions 

Overall, the decrease in labial vibrotactile sensitivity, coupled with 

decreases in pure tone hearing thresholds, and decreased force accuracy and 

reaction times leaves our healthy aging population with a distinct disadvantage in 

their use of incoming sensory information to control outgoing motor outputs and 

accuracy; all this before any neurologic injury. This means that before our older 
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patients even reach our inpatient rehabilitation units, they are already 

demonstrating significantly decreased sensorimotor capabilities. Even though 

perceptually older adults do not demonstrate decreased speech skills, the sub-

clinical consequences of the collective changes noted in this dissertation may 

crucially impact the effectiveness of any future speech therapies delivered after a 

neurologic event.  
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